add kto
Former-commit-id: ec51986cf70b0bdd79b8141e45916670fb97a08e
This commit is contained in:
206
src/llamafactory/train/kto/trainer.py
Normal file
206
src/llamafactory/train/kto/trainer.py
Normal file
@@ -0,0 +1,206 @@
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
from trl import KTOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomKTOTrainer(KTOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
if ref_model is not None:
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
self.ref_model = ref_model
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# KTO parameter
|
||||
self.beta = finetuning_args.kto_beta
|
||||
self.ftx_gamma = finetuning_args.kto_ftx
|
||||
self.desirable_weight = finetuning_args.kto_desirable_weight
|
||||
self.undesirable_weight = finetuning_args.kto_undesirable_weight
|
||||
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
raise AttributeError("Please update `transformers`.")
|
||||
|
||||
if ref_model is not None:
|
||||
if self.is_deepspeed_enabled:
|
||||
if not (
|
||||
getattr(ref_model, "is_loaded_in_8bit", False) or getattr(ref_model, "is_loaded_in_4bit", False)
|
||||
): # quantized models are already set on the correct device
|
||||
self.ref_model = self._prepare_deepspeed(self.ref_model)
|
||||
else:
|
||||
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
|
||||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps.nanmean()
|
||||
|
||||
|
||||
def forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
with torch.no_grad():
|
||||
KL_logits = model(
|
||||
batch["KL_completion_input_ids"],
|
||||
attention_mask=batch["KL_completion_attention_mask"],
|
||||
).logits
|
||||
|
||||
completion_logits = model(
|
||||
batch["input_ids"],
|
||||
attention_mask=batch["attention_mask"],
|
||||
).logits
|
||||
|
||||
completion_logps = self.get_batch_logps(
|
||||
completion_logits,
|
||||
batch["labels"],
|
||||
average_log_prob=False,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
|
||||
KL_logps = self.get_batch_logps(
|
||||
KL_logits,
|
||||
batch["kl_labels"],
|
||||
average_log_prob=False,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
|
||||
if completion_logps.shape[0] != len(batch["tag"]):
|
||||
raise ValueError(
|
||||
"There is a mismatch between the number of examples in this batch and the number of "
|
||||
"examples for which an output sequence was predicted."
|
||||
)
|
||||
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["tag"][i]]
|
||||
rejected_idx = [i for i in range(completion_logps.shape[0]) if not batch["tag"][i]]
|
||||
|
||||
chosen_logps = completion_logps[chosen_idx, ...]
|
||||
rejected_logps = completion_logps[rejected_idx, ...]
|
||||
|
||||
chosen_logits = completion_logits[chosen_idx, ...]
|
||||
rejected_logits = completion_logits[rejected_idx, ...]
|
||||
|
||||
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps)
|
||||
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model,
|
||||
batch: Dict[str, Union[List, torch.LongTensor]],
|
||||
):
|
||||
"""Compute the KTO loss and other metrics for the given batch of inputs for train or test."""
|
||||
metrics = {}
|
||||
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
|
||||
|
||||
(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_chosen_logits,
|
||||
policy_rejected_logits,
|
||||
policy_KL_logps,
|
||||
) = self.forward(model, batch)
|
||||
|
||||
with torch.no_grad():
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
with ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
reference_KL_logps,
|
||||
) = self.forward(ref_model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_KL_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
reference_KL_logps,
|
||||
)
|
||||
losses = losses.nanmean()
|
||||
if self.ftx_gamma > 1e-6 and len(batch["labels"][batch['tag']])>0:
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, batch["labels"][batch['tag']])
|
||||
|
||||
|
||||
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device)
|
||||
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device)
|
||||
|
||||
all_num_chosen = self.accelerator.gather(num_chosen).sum().item()
|
||||
all_num_rejected = self.accelerator.gather(num_rejected).sum().item()
|
||||
|
||||
if all_num_chosen > 0:
|
||||
metrics["rewards/chosen_sum"] = self.accelerator.gather(chosen_rewards.nansum()).nansum().item()
|
||||
metrics["logps/chosen_sum"] = self.accelerator.gather(policy_chosen_logps.nansum()).nansum().item()
|
||||
metrics["count/chosen"] = all_num_chosen
|
||||
|
||||
if all_num_rejected > 0:
|
||||
metrics["rewards/rejected_sum"] = self.accelerator.gather(rejected_rewards.nansum()).nansum().item()
|
||||
metrics["logps/rejected_sum"] = self.accelerator.gather(policy_rejected_logps.nansum()).nansum().item()
|
||||
metrics["count/rejected"] = all_num_rejected
|
||||
|
||||
metrics["kl"] = kl.item()
|
||||
|
||||
return losses, metrics
|
||||
Reference in New Issue
Block a user