[misc] update format (#7277)

This commit is contained in:
hoshi-hiyouga
2025-03-13 02:53:08 +08:00
committed by GitHub
parent 4b9d8da5a4
commit 650a9a9057
62 changed files with 384 additions and 288 deletions

View File

@@ -1,4 +1,4 @@
# Copyright 2024 OpenAccess AI Collective and the LlamaFactory team.
# Copyright 2025 OpenAccess AI Collective and the LlamaFactory team.
#
# This code is inspired by the OpenAccess AI Collective's axolotl library.
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
@@ -15,7 +15,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Literal, Optional
@@ -92,7 +91,7 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
if self.template is None:
raise ValueError("Template is required for MultiModalDataCollator.")
def __call__(self, features: Sequence[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
batch_images, batch_videos, batch_audios = [], [], []
batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
for feature in features:
@@ -205,7 +204,7 @@ class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
compute_dtype: "torch.dtype" = torch.float32
def __call__(self, features: Sequence[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
features = super().__call__(features)
if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)
@@ -221,7 +220,7 @@ class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
r"""Data collator for pairwise data."""
def __call__(self, features: Sequence[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
r"""Pad batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
@@ -247,7 +246,7 @@ class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
r"""Data collator for KTO data."""
def __call__(self, features: Sequence[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
target_features = []
kl_features = []
kto_tags = []

View File

@@ -14,7 +14,6 @@
import os
from abc import abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional, Union
@@ -37,7 +36,7 @@ class DatasetConverter:
dataset_attr: "DatasetAttr"
data_args: "DataArguments"
def _find_medias(self, medias: Union[Any, Sequence[Any]]) -> Optional[list[Any]]:
def _find_medias(self, medias: Union[Any, list[Any]]) -> Optional[list[Any]]:
r"""Optionally concatenate media path to media dir when loading from local disk."""
if not isinstance(medias, list):
medias = [medias] if medias is not None else []

View File

@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from enum import Enum, unique
from typing import TYPE_CHECKING, Optional, TypedDict, Union
@@ -30,7 +29,7 @@ if TYPE_CHECKING:
logger = logging.get_logger(__name__)
SLOTS = Sequence[Union[str, set[str], dict[str, str]]]
SLOTS = list[Union[str, set[str], dict[str, str]]]
@unique

View File

@@ -13,7 +13,6 @@
# limitations under the License.
import os
from collections.abc import Sequence
from typing import TYPE_CHECKING, Literal, Optional, Union
import numpy as np
@@ -157,7 +156,7 @@ def _load_single_dataset(
def _get_merged_dataset(
dataset_names: Optional[Sequence[str]],
dataset_names: Optional[list[str]],
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",

View File

@@ -18,7 +18,6 @@
import inspect
import math
import re
from collections.abc import Sequence
from copy import deepcopy
from dataclasses import dataclass
from io import BytesIO
@@ -83,9 +82,7 @@ if TYPE_CHECKING:
pass
def _get_paligemma_token_type_ids(
imglens: Sequence[int], seqlens: Sequence[int], processor: "MMProcessor"
) -> list[list[int]]:
def _get_paligemma_token_type_ids(imglens: list[int], seqlens: list[int], processor: "MMProcessor") -> list[list[int]]:
r"""Get paligemma token type ids for computing loss.
It is slightly different with the original token type ids where the prompt part is 0.
@@ -120,7 +117,7 @@ def _get_gemma3_token_type_ids(batch_ids: list[list[int]], processor: "MMProcess
return batch_token_type_ids
def _make_batched_images(images: Sequence["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
def _make_batched_images(images: list["ImageObject"], imglens: list[int]) -> list[list["ImageObject"]]:
r"""Make nested list of images."""
batch_images = []
for imglen in imglens:
@@ -140,9 +137,9 @@ class MMPluginMixin:
def _validate_input(
self,
processor: Optional["MMProcessor"],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> None:
r"""Validate if this model accepts the input modalities."""
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
@@ -202,7 +199,7 @@ class MMPluginMixin:
sample_frames = min(total_frames, video_maxlen, sample_frames)
return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
def _regularize_images(self, images: Sequence["ImageInput"], **kwargs) -> list["ImageObject"]:
def _regularize_images(self, images: list["ImageInput"], **kwargs) -> list["ImageObject"]:
r"""Regularize images to avoid error. Including reading and pre-processing."""
results = []
for image in images:
@@ -223,7 +220,7 @@ class MMPluginMixin:
return results
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> list[list["ImageObject"]]:
def _regularize_videos(self, videos: list["VideoInput"], **kwargs) -> list[list["ImageObject"]]:
r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
results = []
for video in videos:
@@ -241,7 +238,7 @@ class MMPluginMixin:
return results
def _regularize_audios(self, audios: Sequence["AudioInput"], sampling_rate: float, **kwargs) -> list["NDArray"]:
def _regularize_audios(self, audios: list["AudioInput"], sampling_rate: float, **kwargs) -> list["NDArray"]:
r"""Regularizes audios to avoid error. Including reading and resampling."""
results = []
for audio in audios:
@@ -257,9 +254,9 @@ class MMPluginMixin:
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
imglens: Optional[list[int]] = None,
) -> dict[str, "torch.Tensor"]:
@@ -335,10 +332,10 @@ class MMPluginMixin:
class BasePlugin(MMPluginMixin):
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
r"""Pre-process input messages before tokenization for VLMs."""
@@ -349,9 +346,9 @@ class BasePlugin(MMPluginMixin):
self,
input_ids: list[int],
labels: Optional[list[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
@@ -361,13 +358,13 @@ class BasePlugin(MMPluginMixin):
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
r"""Build batched multimodal inputs for VLMs.
@@ -392,10 +389,10 @@ class Gemma3Plugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -420,13 +417,13 @@ class Gemma3Plugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -441,10 +438,10 @@ class LlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -481,10 +478,10 @@ class LlavaNextPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -523,10 +520,10 @@ class LlavaNextVideoPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -586,10 +583,10 @@ class MiniCPMVPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -686,9 +683,9 @@ class MiniCPMVPlugin(BasePlugin):
@override
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
**kwargs,
) -> dict[str, "torch.Tensor"]:
@@ -757,13 +754,13 @@ class MiniCPMVPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -828,10 +825,10 @@ class MllamaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -850,13 +847,13 @@ class MllamaPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -885,10 +882,10 @@ class PaliGemmaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -912,9 +909,9 @@ class PaliGemmaPlugin(BasePlugin):
self,
input_ids: list[int],
labels: Optional[list[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["MMProcessor"],
) -> tuple[list[int], Optional[list[int]]]:
@@ -931,13 +928,13 @@ class PaliGemmaPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -952,10 +949,10 @@ class PixtralPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -995,13 +992,13 @@ class PixtralPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -1015,10 +1012,10 @@ class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -1056,13 +1053,13 @@ class Qwen2AudioPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -1090,7 +1087,7 @@ class Qwen2VLPlugin(BasePlugin):
@override
def _regularize_videos(
self, videos: Sequence["VideoInput"], **kwargs
self, videos: list["VideoInput"], **kwargs
) -> tuple[list[list["ImageObject"]], list[float]]:
results, fps_per_video = [], []
for video in videos:
@@ -1118,9 +1115,9 @@ class Qwen2VLPlugin(BasePlugin):
@override
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: "MMProcessor",
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
@@ -1149,10 +1146,10 @@ class Qwen2VLPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
@@ -1204,13 +1201,13 @@ class Qwen2VLPlugin(BasePlugin):
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[list[int]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
imglens: list[int],
vidlens: list[int],
audlens: list[int],
batch_ids: list[list[int]],
processor: Optional["MMProcessor"],
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
@@ -1229,10 +1226,10 @@ class VideoLlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
messages: list[dict[str, str]],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
processor: Optional["MMProcessor"],
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)

View File

@@ -14,7 +14,6 @@
import json
import os
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any, Literal, Optional
@@ -91,7 +90,7 @@ class DatasetAttr:
self.set_attr(tag, attr["tags"])
def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -> list["DatasetAttr"]:
def get_dataset_list(dataset_names: Optional[list[str]], dataset_dir: str) -> list["DatasetAttr"]:
r"""Get the attributes of the datasets."""
if dataset_names is None:
dataset_names = []

View File

@@ -1,3 +1,17 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .feedback import FeedbackDatasetProcessor
from .pairwise import PairwiseDatasetProcessor
from .pretrain import PretrainDatasetProcessor

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,14 +30,14 @@ logger = logging.get_logger(__name__)
class FeedbackDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
kl_response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
kl_response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int], list[int], list[int], bool]:
if response[0]["content"]: # desired example
kto_tag = True

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,13 +30,13 @@ logger = logging.get_logger(__name__)
class PairwiseDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int], list[int], list[int]]:
chosen_messages = self.template.mm_plugin.process_messages(
prompt + [response[0]], images, videos, audios, self.processor

View File

@@ -1,4 +1,4 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py

View File

@@ -14,7 +14,6 @@
import bisect
from abc import ABC, abstractmethod
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
@@ -46,7 +45,7 @@ class DatasetProcessor(ABC):
...
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
def search_for_fit(numbers: list[int], capacity: int) -> int:
r"""Find the index of largest number that fits into the knapsack with the given capacity."""
index = bisect.bisect(numbers, capacity)
return -1 if index == 0 else (index - 1)

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Optional
@@ -33,13 +32,13 @@ logger = logging.get_logger(__name__)
class SupervisedDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int]]:
messages = self.template.mm_plugin.process_messages(prompt + response, images, videos, audios, self.processor)
input_ids, labels = self.template.mm_plugin.process_token_ids(

View File

@@ -13,7 +13,6 @@
# limitations under the License.
from collections import defaultdict
from collections.abc import Sequence
from typing import TYPE_CHECKING, Any, Optional
from ...extras import logging
@@ -31,13 +30,13 @@ logger = logging.get_logger(__name__)
class UnsupervisedDatasetProcessor(DatasetProcessor):
def _encode_data_example(
self,
prompt: Sequence[dict[str, str]],
response: Sequence[dict[str, str]],
prompt: list[dict[str, str]],
response: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
images: list["ImageInput"],
videos: list["VideoInput"],
audios: list["AudioInput"],
) -> tuple[list[int], list[int]]:
if len(response) == 1:
messages = prompt + response

View File

@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional, Union
@@ -57,7 +56,7 @@ class Template:
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
messages: Sequence[dict[str, str]],
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
) -> tuple[list[int], list[int]]:
@@ -73,7 +72,7 @@ class Template:
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
messages: Sequence[dict[str, str]],
messages: list[dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
) -> list[tuple[list[int], list[int]]]:
@@ -115,7 +114,7 @@ class Template:
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: Sequence[dict[str, str]],
messages: list[dict[str, str]],
system: Optional[str],
tools: Optional[str],
) -> list[list[int]]:
@@ -316,7 +315,7 @@ class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
messages: Sequence[dict[str, str]],
messages: list[dict[str, str]],
system: str,
tools: str,
) -> list[list[int]]:
@@ -391,7 +390,7 @@ def register_template(
format_tools: Optional["Formatter"] = None,
format_prefix: Optional["Formatter"] = None,
default_system: str = "",
stop_words: Optional[Sequence[str]] = None,
stop_words: Optional[list[str]] = None,
thought_words: Optional[tuple[str, str]] = None,
efficient_eos: bool = False,
replace_eos: bool = False,