update loading logic
Former-commit-id: f1da17bb0deeb39a29da4dc208951d1ad69bb8ba
This commit is contained in:
@@ -85,18 +85,15 @@ def _init_adapter(
|
||||
|
||||
if finetuning_args.finetuning_type == "freeze":
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if not any(trainable_layer in name for trainable_layer in finetuning_args.trainable_layers):
|
||||
param.requires_grad_(False)
|
||||
else:
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if model_args.checkpoint_dir is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
if model_args.checkpoint_dir is not None:
|
||||
assert load_trainable_params(model, model_args.checkpoint_dir[0]), "Model checkpoint is not correctly loaded."
|
||||
else:
|
||||
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
|
||||
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
logger.info("Fine-tuning method: LoRA")
|
||||
@@ -205,9 +202,14 @@ def load_pretrained(
|
||||
if not is_trainable: # `device_map=auto` should be used for inference only
|
||||
config_kwargs["device_map"] = "auto"
|
||||
|
||||
if model_args.checkpoint_dir is not None and finetuning_args.finetuning_type == "full":
|
||||
model_to_load = model_args.checkpoint_dir[0]
|
||||
else:
|
||||
model_to_load = model_args.model_name_or_path
|
||||
|
||||
# Load and prepare pretrained models (without valuehead).
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
model_to_load,
|
||||
config=config,
|
||||
torch_dtype=torch.bfloat16 if model_args.compute_dtype == torch.bfloat16 else torch.float16,
|
||||
low_cpu_mem_usage=True,
|
||||
@@ -268,17 +270,24 @@ def prepare_args(
|
||||
# Check arguments (do not check finetuning_args since it may be loaded from checkpoints)
|
||||
data_args.init_for_training()
|
||||
|
||||
if stage != "sft" and training_args.predict_with_generate:
|
||||
raise ValueError("`predict_with_generate` cannot be set as True at PT, RM and PPO stages.")
|
||||
assert stage == "sft" or (not training_args.predict_with_generate), \
|
||||
"`predict_with_generate` cannot be set as True at PT, RM and PPO stages."
|
||||
|
||||
if training_args.do_train and training_args.predict_with_generate:
|
||||
raise ValueError("`predict_with_generate` cannot be set as True while training.")
|
||||
assert not (training_args.do_train and training_args.predict_with_generate), \
|
||||
"`predict_with_generate` cannot be set as True while training."
|
||||
|
||||
if training_args.do_predict and (not training_args.predict_with_generate):
|
||||
raise ValueError("Please enable `predict_with_generate` to save model predictions.")
|
||||
assert (not training_args.do_predict) or training_args.predict_with_generate, \
|
||||
"Please enable `predict_with_generate` to save model predictions."
|
||||
|
||||
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
assert model_args.quantization_bit is None or finetuning_args.finetuning_type == "lora", \
|
||||
"Quantization is only compatible with the LoRA method."
|
||||
|
||||
if model_args.checkpoint_dir is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
assert len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
else:
|
||||
assert model_args.quantization_bit is None or len(model_args.checkpoint_dir) == 1, \
|
||||
"Quantized model only accepts a single checkpoint."
|
||||
|
||||
if model_args.quantization_bit is not None and (not training_args.do_train):
|
||||
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
|
||||
@@ -325,8 +334,15 @@ def prepare_infer_args() -> Tuple[ModelArguments, DataTrainingArguments, Finetun
|
||||
else:
|
||||
model_args, data_args, finetuning_args, generating_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
assert model_args.quantization_bit is None or finetuning_args.finetuning_type == "lora", \
|
||||
"Quantization is only compatible with the LoRA method."
|
||||
|
||||
if model_args.checkpoint_dir is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
assert len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
|
||||
else:
|
||||
assert model_args.quantization_bit is None or len(model_args.checkpoint_dir) == 1, \
|
||||
"Quantized model only accepts a single checkpoint."
|
||||
|
||||
if data_args.prompt_template == "default":
|
||||
logger.warning("Please specify `prompt_template` if you are using other pre-trained models.")
|
||||
|
||||
Reference in New Issue
Block a user