modity code structure
Former-commit-id: 0682ed357210897e0b67c4a6eb31a94b3eb929f1
This commit is contained in:
72
src/llmtuner/hparams/model_args.py
Normal file
72
src/llmtuner/hparams/model_args.py
Normal file
@@ -0,0 +1,72 @@
|
||||
import torch
|
||||
from typing import Literal, Optional
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune.
|
||||
"""
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co."}
|
||||
)
|
||||
use_fast_tokenizer: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
|
||||
)
|
||||
use_auth_token: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Will use the token generated when running `huggingface-cli login`."}
|
||||
)
|
||||
model_revision: Optional[str] = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
|
||||
)
|
||||
padding_side: Optional[Literal["left", "right"]] = field(
|
||||
default="left",
|
||||
metadata={"help": "The side on which the model should have padding applied."}
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the model."}
|
||||
)
|
||||
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
|
||||
default="nf4",
|
||||
metadata={"help": "Quantization data type to use in int4 training."}
|
||||
)
|
||||
double_quantization: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use double quantization in int4 training or not."}
|
||||
)
|
||||
compute_dtype: Optional[torch.dtype] = field(
|
||||
default=None,
|
||||
metadata={"help": "Used in quantization configs. Do not specify this argument manually."}
|
||||
)
|
||||
checkpoint_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
|
||||
)
|
||||
reward_model: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory containing the checkpoints of the reward model."}
|
||||
)
|
||||
resume_lora_training: Optional[bool] = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
|
||||
)
|
||||
plot_loss: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.checkpoint_dir is not None: # support merging multiple lora weights
|
||||
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
|
||||
|
||||
if self.quantization_bit is not None:
|
||||
assert self.quantization_bit in [4, 8], "We only accept 4-bit or 8-bit quantization."
|
||||
Reference in New Issue
Block a user