modity code structure
Former-commit-id: 0682ed357210897e0b67c4a6eb31a94b3eb929f1
This commit is contained in:
105
src/llmtuner/extras/misc.py
Normal file
105
src/llmtuner/extras/misc.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import torch
|
||||
from typing import List, Optional
|
||||
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.generation.utils import LogitsProcessorList
|
||||
from transformers.generation.logits_process import LogitsProcessor
|
||||
|
||||
from llmtuner.extras.constants import LAYERNORM_NAMES
|
||||
|
||||
|
||||
class AverageMeter:
|
||||
r"""
|
||||
Computes and stores the average and current value.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0
|
||||
self.avg = 0
|
||||
self.sum = 0
|
||||
self.count = 0
|
||||
|
||||
def update(self, val, n=1):
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
|
||||
# Avoid runtime error in model.generate(do_sample=True).
|
||||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||||
scores.zero_()
|
||||
scores[..., 0] = 1.0
|
||||
return scores
|
||||
|
||||
|
||||
def get_logits_processor() -> LogitsProcessorList:
|
||||
logits_processor = LogitsProcessorList()
|
||||
logits_processor.append(InvalidScoreLogitsProcessor())
|
||||
return logits_processor
|
||||
|
||||
|
||||
def print_trainable_params(model: torch.nn.Module) -> None:
|
||||
trainable_params, all_param = 0, 0
|
||||
for param in model.parameters():
|
||||
num_params = param.numel()
|
||||
# if using DS Zero 3 and the weights are initialized empty
|
||||
if num_params == 0 and hasattr(param, "ds_numel"):
|
||||
num_params = param.ds_numel
|
||||
all_param += num_params
|
||||
if param.requires_grad:
|
||||
trainable_params += num_params
|
||||
print("trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param))
|
||||
|
||||
|
||||
# Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32
|
||||
# Inspired by: https://github.com/huggingface/peft/blob/c0209c35abbf88c63aa267800d98a8e212ed0a42/src/peft/utils/other.py#L35
|
||||
def prepare_model_for_training(
|
||||
model: PreTrainedModel,
|
||||
finetuning_type: str,
|
||||
output_embedding_layer_name: Optional[str] = "lm_head",
|
||||
use_gradient_checkpointing: Optional[bool] = True,
|
||||
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
|
||||
) -> PreTrainedModel:
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if use_gradient_checkpointing:
|
||||
if hasattr(model, "enable_input_require_grads"):
|
||||
model.enable_input_require_grads()
|
||||
else:
|
||||
def make_inputs_require_grad(module, input, output):
|
||||
output.requires_grad_(True)
|
||||
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
||||
|
||||
model.gradient_checkpointing_enable()
|
||||
model.config.use_cache = False # turn off when gradient checkpointing is enabled
|
||||
|
||||
if finetuning_type != "full" and hasattr(model, output_embedding_layer_name):
|
||||
output_embedding_layer: torch.nn.Linear = getattr(model, output_embedding_layer_name)
|
||||
input_dtype = output_embedding_layer.weight.dtype
|
||||
|
||||
class CastOutputToFloat(torch.nn.Sequential):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return super().forward(x.to(input_dtype)).to(torch.float32)
|
||||
|
||||
setattr(model, output_embedding_layer_name, CastOutputToFloat(output_embedding_layer))
|
||||
|
||||
return model
|
||||
|
||||
def torch_gc() -> None:
|
||||
r"""
|
||||
Collects GPU memory.
|
||||
"""
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
Reference in New Issue
Block a user