update hardware requirements
Former-commit-id: 604b3d10fc1448f702943114b66b97bded21e080
This commit is contained in:
22
README_zh.md
22
README_zh.md
@@ -48,8 +48,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
||||
- **多种模型**:LLaMA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、指令监督微调、奖励模型训练、PPO 训练和 DPO 训练。
|
||||
- **多种精度**:32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
|
||||
- **先进算法**:DoRA、LongLoRA、LLaMA Pro、LoftQ 和 Agent 微调。
|
||||
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune、rsLoRA 和 GaLore。
|
||||
- **先进算法**:GaLore、DoRA、LongLoRA、LLaMA Pro、LoftQ 和 Agent 微调。
|
||||
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
|
||||
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
|
||||
|
||||
@@ -272,13 +272,15 @@ huggingface-cli login
|
||||
|
||||
\* *估算值*
|
||||
|
||||
| 训练方法 | 精度 | 7B | 13B | 30B | 65B | 8x7B |
|
||||
| 训练方法 | 精度 | 7B | 13B | 30B | 70B | 8x7B |
|
||||
| ------- | ---- | ----- | ----- | ----- | ------ | ------ |
|
||||
| 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | 900GB |
|
||||
| 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
|
||||
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
|
||||
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
|
||||
| 全参数 | AMP | 120GB | 240GB | 600GB | 1200GB | 900GB |
|
||||
| 全参数 | 16 | 60GB | 120GB | 300GB | 600GB | 400GB |
|
||||
| 部分参数 | 16 | 20GB | 40GB | 80GB | 200GB | 160GB |
|
||||
| LoRA | 16 | 16GB | 32GB | 64GB | 160GB | 120GB |
|
||||
| QLoRA | 8 | 10GB | 20GB | 40GB | 80GB | 60GB |
|
||||
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 30GB |
|
||||
| QLoRA | 2 | 4GB | 8GB | 16GB | 24GB | 18GB |
|
||||
|
||||
## 如何使用
|
||||
|
||||
@@ -482,7 +484,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
accelerate launch --config_file config.yaml src/train_bash.py # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
|
||||
<details><summary>使用 Accelerate 进行 LoRA 训练的 config.yaml 示例</summary>
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
@@ -516,7 +518,7 @@ deepspeed --num_gpus 8 src/train_bash.py \
|
||||
... # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 ds_config.json 示例</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user