update docs
Former-commit-id: a4a2e94241bea6f96590f6cb8ca8b5cddee1917e
This commit is contained in:
@@ -1,35 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage dpo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--val_size 0.1 \
|
||||
--dpo_ftx 1.0 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
39
examples/lora_single_gpu/llama3_lora_dpo.yaml
Normal file
39
examples/lora_single_gpu/llama3_lora_dpo.yaml
Normal file
@@ -0,0 +1,39 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
dpo_ftx: 1.0
|
||||
|
||||
# dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/dpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
19
examples/lora_single_gpu/llama3_lora_eval.yaml
Normal file
19
examples/lora_single_gpu/llama3_lora_eval.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
task: mmlu
|
||||
split: test
|
||||
template: fewshot
|
||||
lang: en
|
||||
n_shot: 5
|
||||
|
||||
# output
|
||||
save_dir: saves/llama3-8b/lora/eval
|
||||
|
||||
# eval
|
||||
batch_size: 4
|
||||
38
examples/lora_single_gpu/llama3_lora_orpo.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_orpo.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: orpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/orpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
38
examples/lora_single_gpu/llama3_lora_ppo.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_ppo.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
reward_model: saves/llama3-8b/lora/reward
|
||||
|
||||
# method
|
||||
stage: ppo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/ppo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# generate
|
||||
max_new_tokens: 512
|
||||
top_k: 0
|
||||
top_p: 0.9
|
||||
24
examples/lora_single_gpu/llama3_lora_predict.yaml
Normal file
24
examples/lora_single_gpu/llama3_lora_predict.yaml
Normal file
@@ -0,0 +1,24 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
stage: sft
|
||||
do_predict: true
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/predict
|
||||
overwrite_output_dir: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
predict_with_generate: true
|
||||
37
examples/lora_single_gpu/llama3_lora_pretrain.yaml
Normal file
37
examples/lora_single_gpu/llama3_lora_pretrain.yaml
Normal file
@@ -0,0 +1,37 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: pt
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: c4_demo
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
38
examples/lora_single_gpu/llama3_lora_reward.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_reward.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: rm
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/reward
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
38
examples/lora_single_gpu/llama3_lora_sft.yaml
Normal file
38
examples/lora_single_gpu/llama3_lora_sft.yaml
Normal file
@@ -0,0 +1,38 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
22
examples/lora_single_gpu/llama3_preprocess.yaml
Normal file
22
examples/lora_single_gpu/llama3_preprocess.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
# model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
tokenized_path: saves/llama3-8b/dataset/sft # use `tokenized_path` in config to load data
|
||||
|
||||
# output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
overwrite_output_dir: true
|
||||
39
examples/lora_single_gpu/llava1_5_lora_sft.yaml
Normal file
39
examples/lora_single_gpu/llava1_5_lora_sft.yaml
Normal file
@@ -0,0 +1,39 @@
|
||||
# model
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
visual_inputs: true
|
||||
|
||||
# method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
dataset: mllm_demo
|
||||
template: vicuna
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
val_size: 0.1
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
output_dir: saves/llava1_5-7b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
@@ -1,32 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage orpo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -1,32 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage ppo \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset alpaca_gpt4_en \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--reward_model ../../saves/LLaMA2-7B/lora/reward \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 512 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--save_steps 100 \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 1000 \
|
||||
--top_k 0 \
|
||||
--top_p 0.9 \
|
||||
--max_new_tokens 256 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -1,19 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage sft \
|
||||
--do_predict \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/predict \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--max_samples 20 \
|
||||
--predict_with_generate
|
||||
@@ -1,19 +0,0 @@
|
||||
#!/bin/bash
|
||||
# use `--tokenized_path` in training script to load data
|
||||
|
||||
CUDA_VISIBLE_DEVICES= llamafactory-cli train \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--max_samples 3000 \
|
||||
--tokenized_path ../../saves/datasets/sft
|
||||
@@ -1,31 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage pt \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset c4_demo \
|
||||
--dataset_dir ../../data \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 10000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -1,33 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage rm \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||
--create_new_adapter \
|
||||
--dataset orca_rlhf \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/reward \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 1.0 \
|
||||
--max_samples 5000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -1,32 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||
--dataset alpaca_gpt4_en,glaive_toolcall \
|
||||
--dataset_dir ../../data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
@@ -1,33 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
||||
--visual_inputs \
|
||||
--dataset mllm_demo \
|
||||
--dataset_dir ../../data \
|
||||
--template vicuna \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 100.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--fp16
|
||||
Reference in New Issue
Block a user