update trainers

Former-commit-id: d0dd6eefed0b86895ed00a7cafb331e5193db645
This commit is contained in:
hiyouga
2024-03-28 18:16:27 +08:00
parent dc540dfaa8
commit 59e6ebf039
13 changed files with 89 additions and 145 deletions

View File

@@ -1,12 +1,12 @@
import json
import os
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
import torch
from transformers import Trainer
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
@@ -29,12 +29,16 @@ class PairwiseTrainer(Trainer):
self.finetuning_args = finetuning_args
self.can_return_loss = True # override property to return eval_loss
def create_optimizer_and_scheduler(self, num_training_steps: int) -> None:
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args, num_training_steps)
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
self.create_optimizer()
self.create_scheduler(num_training_steps=num_training_steps, optimizer=self.optimizer)
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def compute_loss(
self, model: "PreTrainedModel", inputs: Dict[str, torch.Tensor], return_outputs: bool = False