@@ -102,16 +102,16 @@ def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "Mod
|
||||
return samples
|
||||
|
||||
|
||||
def _configure_attn_implementation(model_args: "ModelArguments", config_kwargs: Dict[str, Any]) -> None:
|
||||
def _configure_attn_implementation(model_args: "ModelArguments", init_kwargs: Dict[str, Any]) -> None:
|
||||
if model_args.flash_attn:
|
||||
if is_flash_attn2_available():
|
||||
config_kwargs["attn_implementation"] = "flash_attention_2"
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
init_kwargs["attn_implementation"] = "flash_attention_2"
|
||||
else:
|
||||
logger.warning("FlashAttention2 is not installed.")
|
||||
config_kwargs["attn_implementation"] = None
|
||||
init_kwargs["attn_implementation"] = None
|
||||
else:
|
||||
config_kwargs["attn_implementation"] = "eager"
|
||||
init_kwargs["attn_implementation"] = "eager"
|
||||
|
||||
|
||||
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
@@ -154,7 +154,7 @@ def _configure_quantization(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
config_kwargs: Dict[str, Any],
|
||||
init_kwargs: Dict[str, Any],
|
||||
) -> None:
|
||||
r"""
|
||||
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
|
||||
@@ -187,13 +187,13 @@ def _configure_quantization(
|
||||
if getattr(config, "model_type", None) == "chatglm":
|
||||
raise ValueError("ChatGLM model is not supported.")
|
||||
|
||||
config_kwargs["quantization_config"] = GPTQConfig(
|
||||
init_kwargs["quantization_config"] = GPTQConfig(
|
||||
bits=model_args.export_quantization_bit,
|
||||
tokenizer=tokenizer,
|
||||
dataset=_get_quantization_dataset(tokenizer, model_args),
|
||||
)
|
||||
config_kwargs["device_map"] = "auto"
|
||||
config_kwargs["max_memory"] = get_max_memory()
|
||||
init_kwargs["device_map"] = "auto"
|
||||
init_kwargs["max_memory"] = get_max_memory()
|
||||
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
|
||||
|
||||
elif model_args.quantization_bit is not None: # bnb
|
||||
@@ -202,11 +202,11 @@ def _configure_quantization(
|
||||
|
||||
if model_args.quantization_bit == 8:
|
||||
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
|
||||
|
||||
elif model_args.quantization_bit == 4:
|
||||
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
|
||||
config_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
init_kwargs["quantization_config"] = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_compute_dtype=model_args.compute_dtype,
|
||||
bnb_4bit_use_double_quant=model_args.double_quantization,
|
||||
@@ -262,7 +262,7 @@ def patch_config(
|
||||
config: "PretrainedConfig",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
config_kwargs: Dict[str, Any],
|
||||
init_kwargs: Dict[str, Any],
|
||||
is_trainable: bool,
|
||||
) -> None:
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
@@ -272,7 +272,7 @@ def patch_config(
|
||||
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
|
||||
setattr(config, dtype_name, model_args.compute_dtype == dtype)
|
||||
|
||||
_configure_attn_implementation(model_args, config_kwargs)
|
||||
_configure_attn_implementation(model_args, init_kwargs)
|
||||
|
||||
if model_args.rope_scaling is not None:
|
||||
_configure_rope(config, model_args, is_trainable)
|
||||
@@ -280,12 +280,12 @@ def patch_config(
|
||||
if is_trainable and model_args.shift_attn:
|
||||
_configure_longlora(config)
|
||||
|
||||
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
||||
_configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
|
||||
config_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
init_kwargs["torch_dtype"] = model_args.compute_dtype
|
||||
if not is_deepspeed_zero3_enabled():
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
config_kwargs["low_cpu_mem_usage"] = True
|
||||
init_kwargs["device_map"] = {"": get_current_device()}
|
||||
init_kwargs["low_cpu_mem_usage"] = True
|
||||
|
||||
|
||||
def patch_model(
|
||||
|
||||
Reference in New Issue
Block a user