Former-commit-id: 1c850de660c671d92f0bc63f230d338b60b7c0bd
This commit is contained in:
hiyouga
2024-03-01 13:02:41 +08:00
parent 5306a71b42
commit 59a9a5994e
9 changed files with 99 additions and 87 deletions

View File

@@ -102,16 +102,16 @@ def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "Mod
return samples
def _configure_attn_implementation(model_args: "ModelArguments", config_kwargs: Dict[str, Any]) -> None:
def _configure_attn_implementation(model_args: "ModelArguments", init_kwargs: Dict[str, Any]) -> None:
if model_args.flash_attn:
if is_flash_attn2_available():
config_kwargs["attn_implementation"] = "flash_attention_2"
logger.info("Using FlashAttention-2 for faster training and inference.")
init_kwargs["attn_implementation"] = "flash_attention_2"
else:
logger.warning("FlashAttention2 is not installed.")
config_kwargs["attn_implementation"] = None
init_kwargs["attn_implementation"] = None
else:
config_kwargs["attn_implementation"] = "eager"
init_kwargs["attn_implementation"] = "eager"
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
@@ -154,7 +154,7 @@ def _configure_quantization(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
config_kwargs: Dict[str, Any],
init_kwargs: Dict[str, Any],
) -> None:
r"""
Priority: PTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training)
@@ -187,13 +187,13 @@ def _configure_quantization(
if getattr(config, "model_type", None) == "chatglm":
raise ValueError("ChatGLM model is not supported.")
config_kwargs["quantization_config"] = GPTQConfig(
init_kwargs["quantization_config"] = GPTQConfig(
bits=model_args.export_quantization_bit,
tokenizer=tokenizer,
dataset=_get_quantization_dataset(tokenizer, model_args),
)
config_kwargs["device_map"] = "auto"
config_kwargs["max_memory"] = get_max_memory()
init_kwargs["device_map"] = "auto"
init_kwargs["max_memory"] = get_max_memory()
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit))
elif model_args.quantization_bit is not None: # bnb
@@ -202,11 +202,11 @@ def _configure_quantization(
if model_args.quantization_bit == 8:
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
init_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
config_kwargs["quantization_config"] = BitsAndBytesConfig(
init_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.compute_dtype,
bnb_4bit_use_double_quant=model_args.double_quantization,
@@ -262,7 +262,7 @@ def patch_config(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
config_kwargs: Dict[str, Any],
init_kwargs: Dict[str, Any],
is_trainable: bool,
) -> None:
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
@@ -272,7 +272,7 @@ def patch_config(
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, model_args.compute_dtype == dtype)
_configure_attn_implementation(model_args, config_kwargs)
_configure_attn_implementation(model_args, init_kwargs)
if model_args.rope_scaling is not None:
_configure_rope(config, model_args, is_trainable)
@@ -280,12 +280,12 @@ def patch_config(
if is_trainable and model_args.shift_attn:
_configure_longlora(config)
_configure_quantization(config, tokenizer, model_args, config_kwargs)
_configure_quantization(config, tokenizer, model_args, init_kwargs)
config_kwargs["torch_dtype"] = model_args.compute_dtype
init_kwargs["torch_dtype"] = model_args.compute_dtype
if not is_deepspeed_zero3_enabled():
config_kwargs["device_map"] = {"": get_current_device()}
config_kwargs["low_cpu_mem_usage"] = True
init_kwargs["device_map"] = {"": get_current_device()}
init_kwargs["low_cpu_mem_usage"] = True
def patch_model(