@@ -1,4 +1,4 @@
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
@@ -19,38 +19,48 @@ if TYPE_CHECKING:
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
|
||||
Support both training and inference.
|
||||
"""
|
||||
|
||||
try_download_model_from_ms(model_args)
|
||||
|
||||
config_kwargs = {
|
||||
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||
return {
|
||||
"trust_remote_code": True,
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"token": model_args.hf_hub_token,
|
||||
}
|
||||
|
||||
|
||||
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||
r"""
|
||||
Loads pretrained tokenizer. Must before load_model.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
try_download_model_from_ms(model_args)
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
split_special_tokens=model_args.split_special_tokens,
|
||||
padding_side="right",
|
||||
**config_kwargs,
|
||||
**init_kwargs,
|
||||
)
|
||||
patch_tokenizer(tokenizer)
|
||||
return tokenizer
|
||||
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
|
||||
|
||||
def load_model(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
if is_trainable and model_args.use_unsloth:
|
||||
@@ -76,7 +86,7 @@ def load_model_and_tokenizer(
|
||||
logger.warning("Unsloth does not support loading adapters.")
|
||||
|
||||
if model is None:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **config_kwargs)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
|
||||
|
||||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
@@ -105,14 +115,13 @@ def load_model_and_tokenizer(
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
logger.info(
|
||||
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
)
|
||||
|
||||
if not is_trainable:
|
||||
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
logger.info(param_stats)
|
||||
|
||||
if model_args.print_param_status:
|
||||
for name, param in model.named_parameters():
|
||||
@@ -122,4 +131,18 @@ def load_model_and_tokenizer(
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: Optional[bool] = False,
|
||||
add_valuehead: Optional[bool] = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
"""
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
|
||||
return model, tokenizer
|
||||
|
||||
Reference in New Issue
Block a user