Former-commit-id: 1c850de660c671d92f0bc63f230d338b60b7c0bd
This commit is contained in:
hiyouga
2024-03-01 13:02:41 +08:00
parent 5306a71b42
commit 59a9a5994e
9 changed files with 99 additions and 87 deletions

View File

@@ -1,4 +1,4 @@
from typing import TYPE_CHECKING, Optional, Tuple
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
@@ -19,38 +19,48 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def load_model_and_tokenizer(
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: Optional[bool] = False,
add_valuehead: Optional[bool] = False,
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
r"""
Loads pretrained model and tokenizer.
Support both training and inference.
"""
try_download_model_from_ms(model_args)
config_kwargs = {
def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
return {
"trust_remote_code": True,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.hf_hub_token,
}
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
r"""
Loads pretrained tokenizer. Must before load_model.
Note: including inplace operation of model_args.
"""
try_download_model_from_ms(model_args)
init_kwargs = _get_init_kwargs(model_args)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens,
padding_side="right",
**config_kwargs,
**init_kwargs,
)
patch_tokenizer(tokenizer)
return tokenizer
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable)
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: Optional[bool] = False,
add_valuehead: Optional[bool] = False,
) -> "PreTrainedModel":
r"""
Loads pretrained model. Must after load_tokenizer.
"""
init_kwargs = _get_init_kwargs(model_args)
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
if is_trainable and model_args.use_unsloth:
@@ -76,7 +86,7 @@ def load_model_and_tokenizer(
logger.warning("Unsloth does not support loading adapters.")
if model is None:
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **config_kwargs)
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config, **init_kwargs)
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
@@ -105,14 +115,13 @@ def load_model_and_tokenizer(
model.train()
trainable_params, all_param = count_parameters(model)
logger.info(
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
if is_trainable:
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
trainable_params, all_param, 100 * trainable_params / all_param
)
)
if not is_trainable:
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.")
else:
param_stats = "all params: {:d}".format(all_param)
logger.info(param_stats)
if model_args.print_param_status:
for name, param in model.named_parameters():
@@ -122,4 +131,18 @@ def load_model_and_tokenizer(
)
)
return model
def load_model_and_tokenizer(
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: Optional[bool] = False,
add_valuehead: Optional[bool] = False,
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
r"""
Loads pretrained model and tokenizer.
"""
tokenizer = load_tokenizer(model_args)
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
return model, tokenizer