support llama pro #2338 , add rslora
Former-commit-id: 40d659b7f30dd5a004703c176ec1f22dc864e505
This commit is contained in:
@@ -9,10 +9,13 @@ class ModelArguments:
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."}
|
||||
metadata={
|
||||
"help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models."
|
||||
},
|
||||
)
|
||||
adapter_name_or_path: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
@@ -23,7 +26,8 @@ class ModelArguments:
|
||||
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."},
|
||||
)
|
||||
resize_vocab: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."},
|
||||
)
|
||||
split_special_tokens: Optional[bool] = field(
|
||||
default=False,
|
||||
@@ -34,60 +38,88 @@ class ModelArguments:
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the model."},
|
||||
)
|
||||
quantization_type: Optional[Literal["fp4", "nf4"]] = field(
|
||||
default="nf4", metadata={"help": "Quantization data type to use in int4 training."}
|
||||
default="nf4",
|
||||
metadata={"help": "Quantization data type to use in int4 training."},
|
||||
)
|
||||
double_quantization: Optional[bool] = field(
|
||||
default=True, metadata={"help": "Whether or not to use double quantization in int4 training."}
|
||||
default=True,
|
||||
metadata={"help": "Whether or not to use double quantization in int4 training."},
|
||||
)
|
||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||
default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
|
||||
default=None,
|
||||
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."},
|
||||
)
|
||||
flash_attn: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Enable FlashAttention-2 for faster training."}
|
||||
default=False,
|
||||
metadata={"help": "Enable FlashAttention-2 for faster training."},
|
||||
)
|
||||
shift_attn: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}
|
||||
default=False,
|
||||
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
|
||||
)
|
||||
use_unsloth: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
|
||||
)
|
||||
disable_gradient_checkpointing: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to disable gradient checkpointing."},
|
||||
)
|
||||
upcast_layernorm: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."},
|
||||
)
|
||||
upcast_lmhead_output: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to upcast the output of lm_head in fp32."},
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with Hugging Face Hub."},
|
||||
)
|
||||
ms_hub_token: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Auth token to log in with ModelScope Hub."},
|
||||
)
|
||||
hf_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."})
|
||||
ms_hub_token: Optional[str] = field(default=None, metadata={"help": "Auth token to log in with ModelScope Hub."})
|
||||
export_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the directory to save the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory to save the exported model."},
|
||||
)
|
||||
export_size: Optional[int] = field(
|
||||
default=1, metadata={"help": "The file shard size (in GB) of the exported model."}
|
||||
default=1,
|
||||
metadata={"help": "The file shard size (in GB) of the exported model."},
|
||||
)
|
||||
export_quantization_bit: Optional[int] = field(
|
||||
default=None, metadata={"help": "The number of bits to quantize the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "The number of bits to quantize the exported model."},
|
||||
)
|
||||
export_quantization_dataset: Optional[str] = field(
|
||||
default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
|
||||
default=None,
|
||||
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."},
|
||||
)
|
||||
export_quantization_nsamples: Optional[int] = field(
|
||||
default=128, metadata={"help": "The number of samples used for quantization."}
|
||||
default=128,
|
||||
metadata={"help": "The number of samples used for quantization."},
|
||||
)
|
||||
export_quantization_maxlen: Optional[int] = field(
|
||||
default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}
|
||||
default=1024,
|
||||
metadata={"help": "The maximum length of the model inputs used for quantization."},
|
||||
)
|
||||
export_legacy_format: Optional[bool] = field(
|
||||
default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."},
|
||||
)
|
||||
export_hub_model_id: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}
|
||||
default=None,
|
||||
metadata={"help": "The name of the repository if push the model to the Hugging Face hub."},
|
||||
)
|
||||
print_param_status: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
|
||||
Reference in New Issue
Block a user