Former-commit-id: d86455f685fa531e651333e00b4fe54d895cf2e4
This commit is contained in:
hiyouga
2024-01-09 18:31:27 +08:00
parent 89f4ae51f9
commit 4d6669c268
9 changed files with 78 additions and 50 deletions

View File

@@ -1,17 +1,19 @@
import os
import json
import time
from typing import TYPE_CHECKING
import torch
from typing import TYPE_CHECKING, Dict
from datetime import timedelta
from transformers import PreTrainedModel, TrainerCallback
from transformers.modeling_utils import custom_object_save, unwrap_model
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from peft import PeftModel
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.constants import LOG_FILE_NAME, V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers import TrainingArguments, TrainerState, TrainerControl
from trl import AutoModelForCausalLMWithValueHead
@@ -20,31 +22,66 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _save_model_with_valuehead(
def _fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead",
output_dir: str,
safe_serialization: bool
) -> None:
if isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
model.pretrained_model.config.save_pretrained(output_dir)
if model.pretrained_model.can_generate():
model.pretrained_model.generation_config.save_pretrained(output_dir)
r"""
The model is already unwrapped.
if getattr(model, "is_peft_model", False):
model.pretrained_model.save_pretrained(output_dir, safe_serialization=safe_serialization)
elif getattr(model.pretrained_model, "_auto_class", None): # must not a peft model
custom_object_save(model.pretrained_model, output_dir, config=model.pretrained_model.config)
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
from safetensors import safe_open
from safetensors.torch import save_file
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir,
state_dict=decoder_state_dict or None,
safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
class SavePeftModelCallback(TrainerCallback):
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
_save_model_with_valuehead(
model=unwrap_model(kwargs.pop("model")),
_fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors
)
@@ -54,10 +91,8 @@ class SavePeftModelCallback(TrainerCallback):
Event called at the end of training.
"""
if args.should_save:
_save_model_with_valuehead(
model=unwrap_model(kwargs.pop("model")),
output_dir=args.output_dir,
safe_serialization=args.save_safetensors
_fix_valuehead_checkpoint(
model=kwargs.pop("model"), output_dir=args.output_dir, safe_serialization=args.save_safetensors
)