support RM metrics, add generating Args

Former-commit-id: c461c6190bc124e98dde7f3cf96a59ce40b26fb0
This commit is contained in:
hiyouga
2023-06-12 15:48:48 +08:00
parent 4c5cad9722
commit 4724ae3492
16 changed files with 177 additions and 163 deletions

View File

@@ -15,7 +15,7 @@ from transformers import TextIteratorStreamer
def main():
model_args, data_args, finetuning_args = prepare_infer_args()
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
model, tokenizer = load_pretrained(model_args, finetuning_args)
@@ -25,17 +25,10 @@ def main():
def predict_and_print(query, history: list):
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
gen_kwargs = {
"input_ids": input_ids,
"do_sample": True,
"top_p": 0.7,
"temperature": 0.95,
"num_beams": 1,
"max_new_tokens": 512,
"repetition_penalty": 1.0,
"logits_processor": get_logits_processor(),
"streamer": streamer
}
gen_kwargs = generating_args.to_dict()
gen_kwargs["input_ids"] = input_ids
gen_kwargs["logits_processor"] = get_logits_processor()
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""