improve lora+ impl.
Former-commit-id: 332bad25455a70ad9204e7dd384bb086d789aa39
This commit is contained in:
@@ -12,7 +12,7 @@ from ...model import load_model, load_tokenizer
|
||||
from ...train.sft.metric import ComputeMetrics
|
||||
from ...train.sft.trainer import CustomSeq2SeqTrainer
|
||||
from ...train.utils import create_modelcard_and_push
|
||||
from ..utils import create_custom_optimzer, create_lora_plus_optimizer
|
||||
from ..utils import create_custom_optimzer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -51,8 +51,6 @@ def run_sft(
|
||||
|
||||
# Initialize our Trainer
|
||||
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
|
||||
if finetuning_args.lora_lr_ratio:
|
||||
optimizer = create_lora_plus_optimizer(model, training_args, finetuning_args)
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
|
||||
@@ -43,8 +43,10 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
||||
def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
model_args, data_args, finetuning_args, _ = get_infer_args(args)
|
||||
|
||||
model_args.device_map = {"": "cpu"}
|
||||
|
||||
if model_args.export_dir is None:
|
||||
raise ValueError("Please specify `export_dir`.")
|
||||
raise ValueError("Please specify `export_dir` to save model.")
|
||||
|
||||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
@@ -58,13 +60,10 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
||||
if not isinstance(model, PreTrainedModel):
|
||||
raise ValueError("The model is not a `PreTrainedModel`, export aborted.")
|
||||
|
||||
if getattr(model, "quantization_method", None):
|
||||
model = model.to("cpu")
|
||||
elif hasattr(model.config, "torch_dtype"):
|
||||
model = model.to(getattr(model.config, "torch_dtype")).to("cpu")
|
||||
else:
|
||||
model = model.to(torch.float16).to("cpu")
|
||||
setattr(model.config, "torch_dtype", torch.float16)
|
||||
if getattr(model, "quantization_method", None) is None: # cannot convert dtype of a quantized model
|
||||
output_dtype = getattr(model.config, "torch_dtype", torch.float16)
|
||||
model = model.to(output_dtype)
|
||||
setattr(model.config, "torch_dtype", output_dtype)
|
||||
|
||||
model.save_pretrained(
|
||||
save_directory=model_args.export_dir,
|
||||
|
||||
@@ -1,15 +1,17 @@
|
||||
import math
|
||||
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
|
||||
from transformers.trainer import Trainer
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import Trainer
|
||||
from transformers.optimization import get_scheduler
|
||||
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
||||
from transformers.trainer_pt_utils import get_parameter_names
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_galore_available
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
from ..model import load_model_and_tokenizer, load_valuehead_params
|
||||
from ..model import find_all_linear_modules, load_model_and_tokenizer, load_valuehead_params
|
||||
|
||||
|
||||
if is_galore_available():
|
||||
@@ -29,9 +31,10 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
class DummyOptimizer(torch.optim.Optimizer):
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, lr: float = 1e-3, optimizer_dict: Optional[dict] = None, *args, **kwargs) -> None:
|
||||
dummy_tensor = torch.randn(1, 1)
|
||||
super().__init__([dummy_tensor], {"lr": 1e-3})
|
||||
self.optimizer_dict = optimizer_dict
|
||||
super().__init__([dummy_tensor], {"lr": lr})
|
||||
|
||||
def zero_grad(self, set_to_none: bool = True) -> None:
|
||||
pass
|
||||
@@ -142,59 +145,33 @@ def create_reward_model(
|
||||
return reward_model
|
||||
|
||||
|
||||
def create_custom_optimzer(
|
||||
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
||||
r"""
|
||||
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
|
||||
"""
|
||||
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
|
||||
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
||||
return decay_parameters
|
||||
|
||||
|
||||
def _create_galore_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
dataset: Union["Dataset", "IterableDataset"],
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if not finetuning_args.use_galore:
|
||||
return None
|
||||
|
||||
) -> "torch.optim.Optimizer":
|
||||
require_version("galore_torch", "To fix: pip install git+https://github.com/hiyouga/GaLore.git")
|
||||
galore_params: List[torch.nn.Parameter] = []
|
||||
galore_targets = finetuning_args.galore_target.split(",")
|
||||
|
||||
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
|
||||
galore_targets = find_all_linear_modules(model)
|
||||
|
||||
galore_params: List["torch.nn.Parameter"] = []
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
|
||||
for param in module.parameters():
|
||||
if param.requires_grad and len(param.shape) > 1:
|
||||
galore_params.append(param)
|
||||
|
||||
id_galore_params = {id(param) for param in galore_params}
|
||||
trainable_params = filter(lambda param: param.requires_grad, model.parameters())
|
||||
non_galore_params = [param for param in trainable_params if id(param) not in id_galore_params]
|
||||
|
||||
if training_args.optim == "adamw_torch":
|
||||
optim_class = GaLoreAdamW
|
||||
optim_kwargs = {
|
||||
"lr": training_args.learning_rate,
|
||||
"eps": training_args.adam_epsilon,
|
||||
"betas": (training_args.adam_beta1, training_args.adam_beta2),
|
||||
"weight_decay": training_args.weight_decay,
|
||||
}
|
||||
|
||||
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
|
||||
optim_class = GaLoreAdamW8bit
|
||||
optim_kwargs = {
|
||||
"lr": training_args.learning_rate,
|
||||
"eps": training_args.adam_epsilon,
|
||||
"betas": (training_args.adam_beta1, training_args.adam_beta2),
|
||||
"weight_decay": training_args.weight_decay,
|
||||
"optim_bits": 8,
|
||||
"is_paged": "paged" in training_args.optim,
|
||||
}
|
||||
|
||||
elif training_args.optim == "adafactor":
|
||||
optim_class = GaLoreAdafactor
|
||||
optim_kwargs = {
|
||||
"lr": training_args.learning_rate,
|
||||
"weight_decay": training_args.weight_decay,
|
||||
}
|
||||
|
||||
else:
|
||||
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
|
||||
|
||||
galore_kwargs = {
|
||||
"rank": finetuning_args.galore_rank,
|
||||
"update_proj_gap": finetuning_args.galore_update_interval,
|
||||
@@ -202,6 +179,30 @@ def create_custom_optimzer(
|
||||
"proj_type": finetuning_args.galore_proj_type,
|
||||
}
|
||||
|
||||
id_galore_params = {id(param) for param in galore_params}
|
||||
decay_params, nodecay_params = [], [] # they are non-galore parameters
|
||||
trainable_params: List["torch.nn.Parameter"] = [] # galore_params + decay_params + nodecay_params
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
trainable_params.append(param)
|
||||
if id(param) not in id_galore_params:
|
||||
if name in decay_param_names:
|
||||
decay_params.append(param)
|
||||
else:
|
||||
nodecay_params.append(param)
|
||||
|
||||
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
|
||||
if training_args.optim == "adamw_torch":
|
||||
optim_class = GaLoreAdamW
|
||||
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
|
||||
optim_class = GaLoreAdamW8bit
|
||||
elif training_args.optim == "adafactor":
|
||||
optim_class = GaLoreAdafactor
|
||||
else:
|
||||
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
|
||||
|
||||
if finetuning_args.galore_layerwise:
|
||||
if training_args.gradient_accumulation_steps != 1:
|
||||
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
|
||||
@@ -213,15 +214,18 @@ def create_custom_optimzer(
|
||||
num_training_steps = training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size)
|
||||
|
||||
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
|
||||
for param in non_galore_params:
|
||||
for param in nodecay_params:
|
||||
param_groups = [dict(params=[param])]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in decay_params:
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
for param in galore_params:
|
||||
param_groups = [dict(params=[param], **galore_kwargs)]
|
||||
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
|
||||
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
scheduler_dict: Dict["torch.Tensor", "torch.optim.lr_scheduler.LRScheduler"] = {}
|
||||
for param in non_galore_params + galore_params:
|
||||
for param in trainable_params:
|
||||
scheduler_dict[param] = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer_dict[param],
|
||||
@@ -235,99 +239,72 @@ def create_custom_optimzer(
|
||||
optimizer_dict[param].zero_grad()
|
||||
scheduler_dict[param].step()
|
||||
|
||||
for param in non_galore_params + galore_params:
|
||||
for param in trainable_params:
|
||||
param.register_post_accumulate_grad_hook(optimizer_hook)
|
||||
|
||||
optimizer = DummyOptimizer()
|
||||
optimizer = DummyOptimizer(lr=training_args.learning_rate) # display scheduler result
|
||||
else:
|
||||
param_groups = [dict(params=non_galore_params), dict(params=galore_params, **galore_kwargs)]
|
||||
param_groups = [
|
||||
dict(params=nodecay_params),
|
||||
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
||||
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
|
||||
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
|
||||
return optimizer
|
||||
|
||||
|
||||
def optimizer_group_callback(model, lora_lr_ratio, **defaults):
|
||||
"lora plus"
|
||||
params = []
|
||||
names = set()
|
||||
def _create_loraplus_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
dataset: Union["Dataset", "IterableDataset"],
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> "torch.optim.Optimizer":
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("You should use LoRA tuning to activate LoRA+.")
|
||||
|
||||
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
|
||||
decay_args = {"weight_decay": training_args.weight_decay}
|
||||
|
||||
decay_param_names = _get_decay_parameter_names(model)
|
||||
param_dict: Dict[str, List["torch.nn.Parameter"]] = {
|
||||
"lora_a": [],
|
||||
"lora_b": [],
|
||||
"lora_b_nodecay": [],
|
||||
"embedding": [],
|
||||
}
|
||||
for name, param in model.named_parameters():
|
||||
if "default" in name and ('lora_B' in name or
|
||||
'lora_embedding_B' in name):
|
||||
params.append(param)
|
||||
names.add(name)
|
||||
if params:
|
||||
assert 'lr' in defaults
|
||||
return names, {
|
||||
'params': params,
|
||||
'lr': defaults['lr'] * lora_lr_ratio,
|
||||
}
|
||||
return None, None
|
||||
|
||||
|
||||
def create_lora_plus_optimizer(
|
||||
model: "PreTrainedModel",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if finetuning_args.lora_lr_ratio is None:
|
||||
return None
|
||||
all_param_names = set()
|
||||
param_groups = []
|
||||
param_names, param_group = optimizer_group_callback(
|
||||
model, lora_lr_ratio=finetuning_args.lora_lr_ratio,
|
||||
lr=training_args.learning_rate,
|
||||
weight_decay=training_args.weight_decay)
|
||||
if param_names and all_param_names & param_names:
|
||||
raise ValueError(
|
||||
'Cannot set one parameter to different param groups')
|
||||
if param_names and param_group:
|
||||
all_param_names.update(param_names)
|
||||
param_groups.append(param_group)
|
||||
|
||||
opt_model = model
|
||||
decay_parameters = Trainer.get_decay_parameter_names(None, opt_model)
|
||||
param_groups.extend([
|
||||
{
|
||||
'params': [
|
||||
p for n, p in opt_model.named_parameters()
|
||||
if (n in decay_parameters and n not in all_param_names and p.requires_grad)
|
||||
],
|
||||
'weight_decay':
|
||||
training_args.weight_decay,
|
||||
},
|
||||
{
|
||||
'params': [
|
||||
p for n, p in opt_model.named_parameters()
|
||||
if (n not in decay_parameters and n not in all_param_names and p.requires_grad)
|
||||
],
|
||||
'weight_decay':
|
||||
0.0,
|
||||
},
|
||||
])
|
||||
|
||||
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
|
||||
optimizer = optimizer_cls(param_groups, **optimizer_kwargs)
|
||||
|
||||
if optimizer_cls.__name__ == 'Adam8bit':
|
||||
import bitsandbytes
|
||||
|
||||
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
|
||||
|
||||
skipped = 0
|
||||
for module in opt_model.modules():
|
||||
if isinstance(module, nn.Embedding):
|
||||
skipped += sum({
|
||||
p.data_ptr(): p.numel()
|
||||
for p in module.parameters()
|
||||
}.values())
|
||||
logger.info(
|
||||
f'skipped {module}: {skipped / 2 ** 20}M params')
|
||||
manager.register_module_override(
|
||||
module, 'weight', {'optim_bits': 32})
|
||||
logger.debug(
|
||||
f'bitsandbytes: will optimize {module} in fp32')
|
||||
logger.info(f'skipped: {skipped / 2 ** 20}M params')
|
||||
if param.requires_grad:
|
||||
if "lora_embedding_B" in name:
|
||||
param_dict["embedding"].append(param)
|
||||
elif "lora_B" in name or param.ndim == 1:
|
||||
if name in decay_param_names:
|
||||
param_dict["lora_b"].append(param)
|
||||
else:
|
||||
param_dict["lora_b_nodecay"].append(param)
|
||||
else:
|
||||
param_dict["lora_a"].append(param)
|
||||
|
||||
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
||||
param_groups = [
|
||||
dict(params=param_dict["lora_a"], **decay_args),
|
||||
dict(params=param_dict["lora_b"], lr=loraplus_lr, **decay_args),
|
||||
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr),
|
||||
dict(params=param_dict["embedding"], lr=finetuning_args.loraplus_lr_embedding, **decay_args),
|
||||
]
|
||||
optimizer = optim_class(param_groups, **optim_kwargs)
|
||||
return optimizer
|
||||
|
||||
|
||||
def create_custom_optimzer(
|
||||
model: "PreTrainedModel",
|
||||
dataset: Union["Dataset", "IterableDataset"],
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
) -> Optional["torch.optim.Optimizer"]:
|
||||
if not finetuning_args.use_galore:
|
||||
return _create_galore_optimizer(model, dataset, training_args, finetuning_args)
|
||||
|
||||
if finetuning_args.loraplus_lr_ratio is not None:
|
||||
return _create_loraplus_optimizer(model, dataset, training_args, finetuning_args)
|
||||
|
||||
Reference in New Issue
Block a user