refactor pissa, improve llamaboard
Former-commit-id: 619556e46c19718f702c97df5d570a2a4c5fb13a
This commit is contained in:
@@ -83,9 +83,6 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
|
||||
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Adapter is only valid for the LoRA method.")
|
||||
|
||||
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
if model_args.quantization_bit is not None:
|
||||
if finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
@@ -186,6 +183,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
|
||||
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")
|
||||
|
||||
if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED:
|
||||
raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.")
|
||||
|
||||
if training_args.max_steps == -1 and data_args.streaming:
|
||||
raise ValueError("Please specify `max_steps` in streaming mode.")
|
||||
|
||||
@@ -195,6 +195,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if training_args.do_train and model_args.quantization_device_map == "auto":
|
||||
raise ValueError("Cannot use device map for quantized models in training.")
|
||||
|
||||
if finetuning_args.pissa_init and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("PiSSA is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
if finetuning_args.pure_bf16:
|
||||
if not is_torch_bf16_gpu_available():
|
||||
raise ValueError("This device does not support `pure_bf16`.")
|
||||
@@ -224,6 +227,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||
if model_args.visual_inputs and data_args.packing:
|
||||
raise ValueError("Cannot use packing in MLLM fine-tuning.")
|
||||
|
||||
if model_args.use_unsloth and is_deepspeed_zero3_enabled():
|
||||
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args, training_args)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user