refactor pissa, improve llamaboard
Former-commit-id: 619556e46c19718f702c97df5d570a2a4c5fb13a
This commit is contained in:
@@ -1,4 +1,7 @@
|
||||
# Copyright 2024 the LlamaFactory team.
|
||||
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
||||
#
|
||||
# This code is inspired by the HuggingFace's PEFT library.
|
||||
# https://github.com/huggingface/peft/blob/v0.10.0/src/peft/peft_model.py
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -14,15 +17,11 @@
|
||||
|
||||
import gc
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Dict, Tuple
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
|
||||
import torch
|
||||
from peft import PeftModel
|
||||
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel
|
||||
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
|
||||
from transformers.utils import (
|
||||
SAFE_WEIGHTS_NAME,
|
||||
WEIGHTS_NAME,
|
||||
is_safetensors_available,
|
||||
is_torch_bf16_gpu_available,
|
||||
is_torch_cuda_available,
|
||||
is_torch_mps_available,
|
||||
@@ -31,15 +30,9 @@ from transformers.utils import (
|
||||
)
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
|
||||
from .logging import get_logger
|
||||
|
||||
|
||||
if is_safetensors_available():
|
||||
from safetensors import safe_open
|
||||
from safetensors.torch import save_file
|
||||
|
||||
|
||||
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
|
||||
try:
|
||||
_is_bf16_available = is_torch_bf16_gpu_available()
|
||||
@@ -48,8 +41,6 @@ except Exception:
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
|
||||
@@ -99,7 +90,7 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
if num_params == 0 and hasattr(param, "ds_numel"):
|
||||
num_params = param.ds_numel
|
||||
|
||||
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2
|
||||
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by itemsize
|
||||
if param.__class__.__name__ == "Params4bit":
|
||||
if hasattr(param, "quant_storage") and hasattr(param.quant_storage, "itemsize"):
|
||||
num_bytes = param.quant_storage.itemsize
|
||||
@@ -117,51 +108,6 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||
return trainable_params, all_param
|
||||
|
||||
|
||||
def fix_valuehead_checkpoint(
|
||||
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
|
||||
) -> None:
|
||||
r"""
|
||||
The model is already unwrapped.
|
||||
|
||||
There are three cases:
|
||||
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
|
||||
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
|
||||
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
|
||||
|
||||
We assume `stage3_gather_16bit_weights_on_model_save=true`.
|
||||
"""
|
||||
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
|
||||
return
|
||||
|
||||
if safe_serialization:
|
||||
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
|
||||
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
|
||||
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
|
||||
else:
|
||||
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
|
||||
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
|
||||
|
||||
decoder_state_dict = {}
|
||||
v_head_state_dict = {}
|
||||
for name, param in state_dict.items():
|
||||
if name.startswith("v_head."):
|
||||
v_head_state_dict[name] = param
|
||||
else:
|
||||
decoder_state_dict[name.replace("pretrained_model.", "")] = param
|
||||
|
||||
os.remove(path_to_checkpoint)
|
||||
model.pretrained_model.save_pretrained(
|
||||
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
|
||||
)
|
||||
|
||||
if safe_serialization:
|
||||
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
|
||||
|
||||
logger.info("Value head model saved at: {}".format(output_dir))
|
||||
|
||||
|
||||
def get_current_device() -> torch.device:
|
||||
r"""
|
||||
Gets the current available device.
|
||||
@@ -201,7 +147,7 @@ def get_logits_processor() -> "LogitsProcessorList":
|
||||
return logits_processor
|
||||
|
||||
|
||||
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
||||
def infer_optim_dtype(model_dtype: "torch.dtype") -> "torch.dtype":
|
||||
r"""
|
||||
Infers the optimal dtype according to the model_dtype and device compatibility.
|
||||
"""
|
||||
@@ -220,7 +166,7 @@ def is_gpu_or_npu_available() -> bool:
|
||||
return is_torch_npu_available() or is_torch_cuda_available()
|
||||
|
||||
|
||||
def has_tokenized_data(path: os.PathLike) -> bool:
|
||||
def has_tokenized_data(path: "os.PathLike") -> bool:
|
||||
r"""
|
||||
Checks if the path has a tokenized dataset.
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user