[breaking change] refactor data pipeline (#6901)
* refactor data * rename file Former-commit-id: 7a1a4ce6451cb782573d0bd9dd27a5e443e3a18b
This commit is contained in:
91
src/llamafactory/data/processor/unsupervised.py
Normal file
91
src/llamafactory/data/processor/unsupervised.py
Normal file
@@ -0,0 +1,91 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras import logging
|
||||
from ..data_utils import Role
|
||||
from .processor_utils import DatasetProcessor, infer_seqlen
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class UnsupervisedDatasetProcessor(DatasetProcessor):
|
||||
def _encode_data_example(
|
||||
self,
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
images: Sequence["ImageInput"],
|
||||
videos: Sequence["VideoInput"],
|
||||
audios: Sequence["AudioInput"],
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if len(response) == 1:
|
||||
messages = prompt + response
|
||||
else:
|
||||
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
|
||||
messages = self.template.mm_plugin.process_messages(messages, images, videos, audios, self.processor)
|
||||
input_ids, labels = self.template.encode_oneturn(self.tokenizer, messages, system, tools)
|
||||
if self.template.efficient_eos:
|
||||
labels += [self.tokenizer.eos_token_id]
|
||||
|
||||
input_ids, _ = self.template.mm_plugin.process_token_ids(
|
||||
input_ids, None, images, videos, audios, self.tokenizer, self.processor
|
||||
)
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), self.data_args.cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
return input_ids, labels
|
||||
|
||||
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
||||
# build inputs with format `<bos> X` and labels with format `Y <eos>`
|
||||
model_inputs = defaultdict(list)
|
||||
for i in range(len(examples["_prompt"])):
|
||||
if len(examples["_prompt"][i]) % 2 != 1:
|
||||
logger.warning_rank0(
|
||||
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
||||
)
|
||||
continue
|
||||
|
||||
input_ids, labels = self._encode_data_example(
|
||||
prompt=examples["_prompt"][i],
|
||||
response=examples["_response"][i],
|
||||
system=examples["_system"][i],
|
||||
tools=examples["_tools"][i],
|
||||
images=examples["_images"][i] or [],
|
||||
videos=examples["_videos"][i] or [],
|
||||
audios=examples["_audios"][i] or [],
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
model_inputs["images"].append(examples["_images"][i])
|
||||
model_inputs["videos"].append(examples["_videos"][i])
|
||||
model_inputs["audios"].append(examples["_audios"][i])
|
||||
|
||||
return model_inputs
|
||||
|
||||
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(self.tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print("labels:\n{}".format(self.tokenizer.decode(example["labels"], skip_special_tokens=False)))
|
||||
Reference in New Issue
Block a user