[model] switch to gptqmodel (#8108)
This commit is contained in:
@@ -32,7 +32,7 @@ if TYPE_CHECKING:
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
|
||||
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments") -> None:
|
||||
if model_args.rope_scaling is None:
|
||||
return
|
||||
|
||||
@@ -40,30 +40,40 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
|
||||
logger.warning_rank0("Current model does not support RoPE scaling.")
|
||||
return
|
||||
|
||||
rope_kwargs = {"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling)} # handle enum
|
||||
if model_args.model_max_length is not None:
|
||||
if is_trainable and model_args.rope_scaling == RopeScaling.DYNAMIC:
|
||||
if hasattr(config, "max_position_embeddings"):
|
||||
old_max_length = getattr(config, "max_position_embeddings", None)
|
||||
else:
|
||||
logger.warning_rank0("Cannot find the max position embeddings in the config.")
|
||||
return
|
||||
|
||||
if model_args.model_max_length is not None: # training
|
||||
if model_args.model_max_length <= old_max_length:
|
||||
logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.")
|
||||
return
|
||||
|
||||
if model_args.rope_scaling == RopeScaling.DYNAMIC:
|
||||
logger.warning_rank0(
|
||||
"Dynamic NTK scaling may not work well with fine-tuning. "
|
||||
"See: https://github.com/huggingface/transformers/pull/24653"
|
||||
)
|
||||
|
||||
current_max_length = getattr(config, "max_position_embeddings", None)
|
||||
if (not current_max_length) or model_args.model_max_length <= current_max_length:
|
||||
logger.warning_rank0("Input length is smaller than max length. Disabling rope scaling.")
|
||||
return
|
||||
rope_factor = float(math.ceil(model_args.model_max_length / old_max_length))
|
||||
else: # inference
|
||||
rope_factor = 2.0
|
||||
|
||||
logger.info_rank0(f"Enlarge max model length from {current_max_length} to {model_args.model_max_length}.")
|
||||
setattr(config, "max_position_embeddings", model_args.model_max_length)
|
||||
rope_kwargs["factor"] = float(math.ceil(model_args.model_max_length / current_max_length))
|
||||
if model_args.rope_scaling in [RopeScaling.DYNAMIC, RopeScaling.YARN]:
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
elif model_args.rope_scaling == RopeScaling.LLAMA3:
|
||||
rope_kwargs["original_max_position_embeddings"] = current_max_length
|
||||
rope_kwargs["low_freq_factor"] = 1.0
|
||||
rope_kwargs["high_freq_factor"] = 4.0
|
||||
else:
|
||||
rope_kwargs["factor"] = 2.0
|
||||
rope_kwargs = {
|
||||
"rope_type": getattr(model_args.rope_scaling, "value", model_args.rope_scaling), # handle enum
|
||||
"factor": rope_factor,
|
||||
}
|
||||
setattr(config, "max_position_embeddings", old_max_length * rope_factor)
|
||||
logger.info_rank0(f"Enlarge max model length from {old_max_length} to {old_max_length * rope_factor}.")
|
||||
|
||||
if model_args.rope_scaling in [RopeScaling.DYNAMIC, RopeScaling.YARN]:
|
||||
rope_kwargs["original_max_position_embeddings"] = old_max_length
|
||||
elif model_args.rope_scaling == RopeScaling.LLAMA3:
|
||||
rope_kwargs["original_max_position_embeddings"] = old_max_length
|
||||
rope_kwargs["low_freq_factor"] = 1.0
|
||||
rope_kwargs["high_freq_factor"] = 4.0
|
||||
|
||||
setattr(config, "rope_scaling", rope_kwargs)
|
||||
logger.info_rank0(
|
||||
|
||||
Reference in New Issue
Block a user