add test cases

Former-commit-id: 731176ff34cdf0cbf6b41c40c69f4ceb54c2daf6
This commit is contained in:
hiyouga
2024-06-15 04:05:54 +08:00
parent f4f315fd11
commit 3ff9b87012
9 changed files with 184 additions and 34 deletions

View File

@@ -25,8 +25,12 @@ def _setup_full_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> None:
if not is_trainable:
return
logger.info("Fine-tuning method: Full")
forbidden_modules = set()
if model_args.visual_inputs and finetuning_args.freeze_vision_tower:
@@ -47,8 +51,12 @@ def _setup_freeze_tuning(
model: "PreTrainedModel",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> None:
if not is_trainable:
return
logger.info("Fine-tuning method: Freeze")
if model_args.visual_inputs:
config = model.config.text_config
@@ -132,7 +140,9 @@ def _setup_lora_tuning(
is_trainable: bool,
cast_trainable_params_to_fp32: bool,
) -> "PeftModel":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
if is_trainable:
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
adapter_to_resume = None
if model_args.adapter_name_or_path is not None:
@@ -173,6 +183,8 @@ def _setup_lora_tuning(
offload_folder=model_args.offload_folder,
)
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
if is_trainable and adapter_to_resume is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
@@ -227,9 +239,6 @@ def _setup_lora_tuning(
for param in filter(lambda p: p.requires_grad, model.parameters()):
param.data = param.data.to(torch.float32)
if model_args.adapter_name_or_path is not None:
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
return model
@@ -247,29 +256,27 @@ def init_adapter(
Note that the trainable parameters must be cast to float32.
"""
if (not is_trainable) and model_args.adapter_name_or_path is None:
logger.info("Adapter is not found at evaluation, load the base model.")
return model
if is_trainable and getattr(model, "quantization_method", None) and finetuning_args.finetuning_type != "lora":
raise ValueError("Quantized models can only be used for the LoRA tuning.")
if finetuning_args.finetuning_type != "lora" and getattr(model, "quantization_method", None):
raise ValueError("You can only use lora for quantized models.")
if is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
if not is_trainable:
cast_trainable_params_to_fp32 = False
elif is_deepspeed_zero3_enabled() or is_fsdp_enabled() or finetuning_args.pure_bf16 or finetuning_args.use_badam:
logger.info("ZeRO3/FSDP/PureBF16/BAdam detected, remaining trainable params as their original precision.")
cast_trainable_params_to_fp32 = False
else:
logger.info("Upcasting trainable params to float32.")
cast_trainable_params_to_fp32 = True
if is_trainable and finetuning_args.finetuning_type == "full":
_setup_full_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
if is_trainable and finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, model_args, finetuning_args, cast_trainable_params_to_fp32)
if finetuning_args.finetuning_type == "lora":
if finetuning_args.finetuning_type == "full":
_setup_full_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "freeze":
_setup_freeze_tuning(model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
elif finetuning_args.finetuning_type == "lora":
model = _setup_lora_tuning(
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
)
else:
raise NotImplementedError("Unknown finetuning type: {}.".format(finetuning_args.finetuning_type))
return model