merge data part to the text stream
Former-commit-id: 7ee20286d9bcc2d5378bfd6bb02cd3648396d873
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
from functools import partial
|
||||
from itertools import chain
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Tuple, Optional
|
||||
|
||||
from ..extras.constants import IGNORE_INDEX
|
||||
from ..extras.logging import get_logger
|
||||
@@ -9,7 +9,7 @@ from .utils import Role
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer, AutoProcessor
|
||||
|
||||
from ..hparams import DataArguments
|
||||
from .template import Template
|
||||
@@ -19,19 +19,27 @@ logger = get_logger(__name__)
|
||||
|
||||
|
||||
def preprocess_pretrain_dataset(
|
||||
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
|
||||
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
|
||||
text_examples = [
|
||||
messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]
|
||||
]
|
||||
|
||||
if not data_args.packing:
|
||||
if data_args.template == "gemma":
|
||||
text_examples = [tokenizer.bos_token + example for example in text_examples]
|
||||
|
||||
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
|
||||
result = tokenizer(
|
||||
text_examples, add_special_tokens=False, max_length=data_args.cutoff_len
|
||||
)
|
||||
else:
|
||||
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
|
||||
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
|
||||
concatenated_examples = {
|
||||
k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()
|
||||
}
|
||||
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
|
||||
block_size = data_args.cutoff_len
|
||||
total_length = (total_length // block_size) * block_size
|
||||
@@ -54,7 +62,11 @@ def preprocess_supervised_dataset(
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
}
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
@@ -75,7 +87,9 @@ def preprocess_supervised_dataset(
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (
|
||||
len(source_ids) - 1
|
||||
)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
@@ -114,7 +128,9 @@ def preprocess_packed_supervised_dataset(
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif len(input_ids) != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (
|
||||
len(source_ids) - 1
|
||||
)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
@@ -139,6 +155,64 @@ def preprocess_packed_supervised_dataset(
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_multimodal_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
processor: "AutoProcessor",
|
||||
template: "Template",
|
||||
data_args: "DataArguments",
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
|
||||
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
|
||||
tokenizer = processor.tokenizer
|
||||
model_inputs = {
|
||||
"input_ids": [],
|
||||
"attention_mask": [],
|
||||
"labels": [],
|
||||
"pixel_values": [],
|
||||
}
|
||||
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
continue
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = [], []
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(
|
||||
template.encode_multiturn(
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (
|
||||
len(source_ids) - 1
|
||||
)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
pixel_values = processor.image_processor(
|
||||
examples["images"][0], return_tensors="pt"
|
||||
)["pixel_values"][0]
|
||||
model_inputs["pixel_values"].append(pixel_values)
|
||||
return model_inputs
|
||||
|
||||
|
||||
def preprocess_unsupervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
@@ -155,7 +229,9 @@ def preprocess_unsupervised_dataset(
|
||||
if len(examples["response"][i]) == 1:
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
else:
|
||||
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||
messages = examples["prompt"][i] + [
|
||||
{"role": Role.ASSISTANT.value, "content": ""}
|
||||
]
|
||||
|
||||
input_ids, labels = template.encode_oneturn(
|
||||
tokenizer,
|
||||
@@ -218,29 +294,58 @@ def preprocess_pairwise_dataset(
|
||||
return model_inputs
|
||||
|
||||
|
||||
def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
def print_supervised_dataset_example(
|
||||
example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer"
|
||||
) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print(
|
||||
"inputs:\n{}".format(
|
||||
tokenizer.decode(example["input_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
print("label_ids:\n{}".format(example["labels"]))
|
||||
print(
|
||||
"labels:\n{}".format(
|
||||
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, example["labels"])), skip_special_tokens=False)
|
||||
tokenizer.decode(
|
||||
list(filter(lambda x: x != IGNORE_INDEX, example["labels"])),
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def print_pairwise_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
def print_pairwise_dataset_example(
|
||||
example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer"
|
||||
) -> None:
|
||||
print("prompt_ids:\n{}".format(example["prompt_ids"]))
|
||||
print("prompt:\n{}".format(tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)))
|
||||
print(
|
||||
"prompt:\n{}".format(
|
||||
tokenizer.decode(example["prompt_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
print("chosen_ids:\n{}".format(example["chosen_ids"]))
|
||||
print("chosen:\n{}".format(tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)))
|
||||
print(
|
||||
"chosen:\n{}".format(
|
||||
tokenizer.decode(example["chosen_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
print("rejected_ids:\n{}".format(example["rejected_ids"]))
|
||||
print("rejected:\n{}".format(tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)))
|
||||
print(
|
||||
"rejected:\n{}".format(
|
||||
tokenizer.decode(example["rejected_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None:
|
||||
def print_unsupervised_dataset_example(
|
||||
example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer"
|
||||
) -> None:
|
||||
print("input_ids:\n{}".format(example["input_ids"]))
|
||||
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
|
||||
print(
|
||||
"inputs:\n{}".format(
|
||||
tokenizer.decode(example["input_ids"], skip_special_tokens=False)
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def get_preprocess_and_print_func(
|
||||
@@ -249,30 +354,56 @@ def get_preprocess_and_print_func(
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
processor: Optional["AutoProcessor"] = None,
|
||||
) -> Tuple[Callable, Callable]:
|
||||
if stage == "pt":
|
||||
preprocess_func = partial(preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
preprocess_func = partial(
|
||||
preprocess_pretrain_dataset, tokenizer=tokenizer, data_args=data_args
|
||||
)
|
||||
print_function = partial(
|
||||
print_unsupervised_dataset_example, tokenizer=tokenizer
|
||||
)
|
||||
elif stage == "sft" and not training_args.predict_with_generate:
|
||||
if data_args.packing:
|
||||
preprocess_func = partial(
|
||||
preprocess_packed_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_packed_supervised_dataset,
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
data_args=data_args,
|
||||
)
|
||||
elif processor is not None:
|
||||
preprocess_func = partial(
|
||||
preprocess_multimodal_supervised_dataset,
|
||||
processor=processor,
|
||||
template=template,
|
||||
data_args=data_args,
|
||||
)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_supervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_supervised_dataset,
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
data_args=data_args,
|
||||
)
|
||||
|
||||
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
||||
elif stage == "rm":
|
||||
preprocess_func = partial(
|
||||
preprocess_pairwise_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_pairwise_dataset,
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
||||
else:
|
||||
preprocess_func = partial(
|
||||
preprocess_unsupervised_dataset, tokenizer=tokenizer, template=template, data_args=data_args
|
||||
preprocess_unsupervised_dataset,
|
||||
tokenizer=tokenizer,
|
||||
template=template,
|
||||
data_args=data_args,
|
||||
)
|
||||
print_function = partial(
|
||||
print_unsupervised_dataset_example, tokenizer=tokenizer
|
||||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
|
||||
return preprocess_func, print_function
|
||||
return preprocess_func, print_function
|
||||
|
||||
Reference in New Issue
Block a user