[misc] lint code (#9395)
This commit is contained in:
@@ -137,7 +137,6 @@ def _load_single_dataset(
|
||||
cache_dir=model_args.cache_dir,
|
||||
token=model_args.hf_hub_token,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
streaming=data_args.streaming and dataset_attr.load_from != "file",
|
||||
)
|
||||
if data_args.streaming and dataset_attr.load_from == "file":
|
||||
|
||||
@@ -70,7 +70,6 @@ if TYPE_CHECKING:
|
||||
from transformers.image_processing_utils import BaseImageProcessor
|
||||
from transformers.video_processing_utils import BaseVideoProcessor
|
||||
|
||||
|
||||
class EncodedImage(TypedDict):
|
||||
path: Optional[str]
|
||||
bytes: Optional[bytes]
|
||||
|
||||
@@ -56,7 +56,18 @@ LAYERNORM_NAMES = {"norm", "ln"}
|
||||
|
||||
LLAMABOARD_CONFIG = "llamaboard_config.yaml"
|
||||
|
||||
MCA_SUPPORTED_MODELS = {"deepseek_v3", "llama", "mistral", "mixtral", "qwen2", "qwen2_vl", "qwen2_5_vl", "qwen3", "qwen3_moe", "qwen3_next"}
|
||||
MCA_SUPPORTED_MODELS = {
|
||||
"deepseek_v3",
|
||||
"llama",
|
||||
"mistral",
|
||||
"mixtral",
|
||||
"qwen2",
|
||||
"qwen2_vl",
|
||||
"qwen2_5_vl",
|
||||
"qwen3",
|
||||
"qwen3_moe",
|
||||
"qwen3_next",
|
||||
}
|
||||
|
||||
METHODS = ["full", "freeze", "lora", "oft"]
|
||||
|
||||
|
||||
@@ -475,7 +475,12 @@ class FinetuningArguments(
|
||||
)
|
||||
use_mca: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to use MCA (Megatron Core Adapter) training. Controlled by USE_MCA environment variable."},
|
||||
metadata={
|
||||
"help": (
|
||||
"Whether or not to use MCA (Megatron Core Adapter) training. "
|
||||
"Controlled by USE_MCA environment variable."
|
||||
)
|
||||
},
|
||||
)
|
||||
use_muon: bool = field(
|
||||
default=False,
|
||||
|
||||
@@ -55,12 +55,16 @@ _EVAL_CLS = tuple[ModelArguments, DataArguments, EvaluationArguments, Finetuning
|
||||
|
||||
if is_mcore_adapter_available() and is_env_enabled("USE_MCA"):
|
||||
from mcore_adapter import TrainingArguments as McaTrainingArguments
|
||||
|
||||
_TRAIN_MCA_ARGS = [ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_TRAIN_MCA_CLS = tuple[ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments]
|
||||
_TRAIN_MCA_CLS = tuple[
|
||||
ModelArguments, DataArguments, McaTrainingArguments, FinetuningArguments, GeneratingArguments
|
||||
]
|
||||
else:
|
||||
_TRAIN_MCA_ARGS = []
|
||||
_TRAIN_MCA_CLS = tuple()
|
||||
|
||||
|
||||
def read_args(args: Optional[Union[dict[str, Any], list[str]]] = None) -> Union[dict[str, Any], list[str]]:
|
||||
r"""Get arguments from the command line or a config file."""
|
||||
if args is not None:
|
||||
|
||||
@@ -20,17 +20,18 @@ from transformers import Seq2SeqTrainingArguments
|
||||
from transformers.training_args import _convert_str_dict
|
||||
|
||||
from ..extras.misc import is_env_enabled, use_ray
|
||||
from ..extras.packages import is_mcore_adapter_available
|
||||
|
||||
|
||||
if is_env_enabled("USE_MCA"):
|
||||
try:
|
||||
from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
|
||||
BaseTrainingArguments = McaSeq2SeqTrainingArguments
|
||||
except ImportError:
|
||||
if not is_mcore_adapter_available():
|
||||
raise ImportError(
|
||||
"mcore_adapter is required when USE_MCA=1.",
|
||||
"Please install `mcore_adapter` and its dependencies."
|
||||
"mcore_adapter is required when USE_MCA=1. Please install `mcore_adapter` and its dependencies."
|
||||
)
|
||||
|
||||
from mcore_adapter import Seq2SeqTrainingArguments as McaSeq2SeqTrainingArguments
|
||||
|
||||
BaseTrainingArguments = McaSeq2SeqTrainingArguments
|
||||
else:
|
||||
BaseTrainingArguments = Seq2SeqTrainingArguments
|
||||
|
||||
|
||||
@@ -54,8 +54,7 @@ def launch():
|
||||
)
|
||||
|
||||
command = sys.argv.pop(1) if len(sys.argv) > 1 else "help"
|
||||
if is_env_enabled("USE_MCA"):
|
||||
# force use torchrun
|
||||
if is_env_enabled("USE_MCA"): # force use torchrun
|
||||
os.environ["FORCE_TORCHRUN"] = "1"
|
||||
|
||||
if command == "train" and (is_env_enabled("FORCE_TORCHRUN") or (get_device_count() > 1 and not use_ray())):
|
||||
|
||||
@@ -16,4 +16,3 @@ from .workflow import run_dpo, run_pt, run_sft
|
||||
|
||||
|
||||
__all__ = ["run_dpo", "run_pt", "run_sft"]
|
||||
|
||||
|
||||
@@ -75,12 +75,17 @@ def _data_collator_wrapper(data_collator: Any):
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def _check_model_support(model_args: ModelArguments):
|
||||
from transformers import AutoConfig as HfAutoConfig
|
||||
config = HfAutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code)
|
||||
|
||||
config = HfAutoConfig.from_pretrained(
|
||||
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
||||
)
|
||||
if config.model_type not in MCA_SUPPORTED_MODELS:
|
||||
raise ValueError(f"Model {config.model_type} is not supported by MCA.")
|
||||
|
||||
|
||||
def run_pt(
|
||||
model_args: ModelArguments,
|
||||
data_args: DataArguments,
|
||||
@@ -161,22 +166,23 @@ def run_sft(
|
||||
model = AutoModel.from_pretrained(model_args.model_name_or_path, training_args)
|
||||
|
||||
# optional freezing for qwen2_vl, qwen2_5_vl
|
||||
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_vision_tower:
|
||||
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"]:
|
||||
params_to_freeze = []
|
||||
if finetuning_args.freeze_vision_tower:
|
||||
params_to_freeze.extend(["vision_model.blocks", "vision_model.patch_embed"])
|
||||
|
||||
if finetuning_args.freeze_multi_modal_projector:
|
||||
params_to_freeze.extend(["multi_modal_projector"])
|
||||
|
||||
if finetuning_args.freeze_language_model:
|
||||
params_to_freeze.extend(["embedding", "decoder", "output_layer"])
|
||||
|
||||
if params_to_freeze:
|
||||
for name, p in model.named_parameters():
|
||||
if any(name.startswith(k) for k in ["vision_model.blocks", "vision_model.patch_embed"]):
|
||||
p.requires_grad_(False)
|
||||
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_multi_modal_projector:
|
||||
for name, p in model.named_parameters():
|
||||
if any(name.startswith(k) for k in ["multi_modal_projector"]):
|
||||
p.requires_grad_(False)
|
||||
if getattr(model.config, "hf_model_type", None) in ["qwen2_vl", "qwen2_5_vl"] and finetuning_args.freeze_language_model:
|
||||
for name, p in model.named_parameters():
|
||||
if any(name.startswith(k) for k in ["embedding", "decoder", "output_layer"]):
|
||||
if any(name.startswith(k) for k in params_to_freeze):
|
||||
p.requires_grad_(False)
|
||||
|
||||
pad_to_max = (
|
||||
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
|
||||
)
|
||||
pad_to_max = training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
|
||||
data_collator = SFTDataCollatorWith4DAttentionMask(
|
||||
template=template,
|
||||
padding="max_length" if pad_to_max else "longest",
|
||||
@@ -239,9 +245,7 @@ def run_dpo(
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
data_args.cutoff_len -= 1
|
||||
|
||||
pad_to_max = (
|
||||
training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
|
||||
)
|
||||
pad_to_max = training_args.expert_model_parallel_size is not None and training_args.expert_model_parallel_size > 1
|
||||
dpo_config = DPOConfig(
|
||||
beta=finetuning_args.pref_beta,
|
||||
pref_loss=finetuning_args.pref_loss,
|
||||
@@ -289,4 +293,3 @@ def run_dpo(
|
||||
keys += ["eval_loss"]
|
||||
|
||||
plot_loss(training_args.output_dir, keys=keys)
|
||||
|
||||
|
||||
@@ -71,13 +71,17 @@ def _training_function(config: dict[str, Any]) -> None:
|
||||
raise ImportError("mcore_adapter is not installed. Please install it with `pip install mcore-adapter`.")
|
||||
if finetuning_args.stage == "pt":
|
||||
from .mca import run_pt as run_pt_mca
|
||||
|
||||
run_pt_mca(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
from .mca import run_sft as run_sft_mca
|
||||
|
||||
run_sft_mca(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
else: # dpo
|
||||
elif finetuning_args.stage == "dpo":
|
||||
from .mca import run_dpo as run_dpo_mca
|
||||
|
||||
run_dpo_mca(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
|
||||
elif finetuning_args.stage == "pt":
|
||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
|
||||
@@ -24,7 +24,7 @@ class KernelType(str, Enum):
|
||||
|
||||
|
||||
class DeviceType(str, Enum):
|
||||
CPU = 'cpu'
|
||||
CUDA = 'cuda'
|
||||
NPU = 'npu'
|
||||
XPU = 'xpu'
|
||||
CPU = "cpu"
|
||||
CUDA = "cuda"
|
||||
NPU = "npu"
|
||||
XPU = "xpu"
|
||||
|
||||
@@ -27,14 +27,11 @@ def _npu_swiglu_forward(self, hidden_state):
|
||||
import torch_npu
|
||||
|
||||
return self.down_proj(
|
||||
torch_npu.npu_swiglu(
|
||||
torch.cat((self.gate_proj(hidden_state), self.up_proj(hidden_state)), dim=-1), dim=-1
|
||||
)
|
||||
torch_npu.npu_swiglu(torch.cat((self.gate_proj(hidden_state), self.up_proj(hidden_state)), dim=-1), dim=-1)
|
||||
)
|
||||
|
||||
|
||||
class NpuSwiGluKernel(MetaSwiGluKernel):
|
||||
|
||||
device = DeviceType.NPU
|
||||
kernel = _npu_swiglu_forward
|
||||
|
||||
@@ -43,7 +40,7 @@ class NpuSwiGluKernel(MetaSwiGluKernel):
|
||||
KERNEL_REGISTRY.register(kernel_type, device_type, cls)
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model, **kwargs) -> 'HFModel':
|
||||
def apply(cls, model, **kwargs) -> "HFModel":
|
||||
if not is_torch_npu_available():
|
||||
return model
|
||||
|
||||
@@ -51,7 +48,6 @@ class NpuSwiGluKernel(MetaSwiGluKernel):
|
||||
for name, module in model.named_modules():
|
||||
# Match any module whose class name contains "RMSNorm"
|
||||
if re.search(swiglu_pattern, module.__class__.__name__):
|
||||
|
||||
# Bind function as an instance method to preserve `self` semantics
|
||||
# and replace the original forward
|
||||
module.forward = types.MethodType(cls.kernel, module)
|
||||
|
||||
@@ -21,10 +21,10 @@ from .constants import DeviceType, KernelType
|
||||
|
||||
|
||||
class KernelRegistry:
|
||||
_instance: Optional['KernelRegistry'] = None
|
||||
_instance: Optional["KernelRegistry"] = None
|
||||
_initialized: bool = False
|
||||
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> 'KernelRegistry':
|
||||
def __new__(cls, *args: Any, **kwargs: Any) -> "KernelRegistry":
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
return cls._instance
|
||||
@@ -36,10 +36,7 @@ class KernelRegistry:
|
||||
self._initialized = True
|
||||
|
||||
def register(
|
||||
self,
|
||||
kernel_type: KernelType,
|
||||
device_type: DeviceType,
|
||||
kernel_impl: Optional[Callable[..., Any]]
|
||||
self, kernel_type: KernelType, device_type: DeviceType, kernel_impl: Optional[Callable[..., Any]]
|
||||
) -> None:
|
||||
"""Register a kernel implementation.
|
||||
|
||||
@@ -57,11 +54,7 @@ class KernelRegistry:
|
||||
self._registry[kernel_type][device_type] = kernel_impl
|
||||
print(f"Registered kernel {kernel_type.name} for device {device_type.name}.")
|
||||
|
||||
def get_kernel(
|
||||
self,
|
||||
kernel_type: KernelType,
|
||||
device_type: DeviceType
|
||||
) -> Optional[Callable[..., Any]]:
|
||||
def get_kernel(self, kernel_type: KernelType, device_type: DeviceType) -> Optional[Callable[..., Any]]:
|
||||
return self._registry.get(kernel_type, {}).get(device_type)
|
||||
|
||||
|
||||
@@ -84,35 +77,30 @@ class MetaKernel(ABC):
|
||||
|
||||
|
||||
class MetaFlashAttentionKernel(MetaKernel):
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model: HFModel, **kwargs) -> HFModel:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MetaRMSNormKernel(MetaKernel):
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model: HFModel, **kwargs) -> HFModel:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MetaSwiGluKernel(MetaKernel):
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model: HFModel, **kwargs) -> HFModel:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MetaRoPEKernel(MetaKernel):
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model: HFModel, **kwargs) -> HFModel:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MetaMoEKernel(MetaKernel):
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model: HFModel, **kwargs) -> HFModel:
|
||||
raise NotImplementedError
|
||||
@@ -130,7 +118,7 @@ def discover_kernels(model: HFModel) -> list[MetaKernel]:
|
||||
return []
|
||||
|
||||
|
||||
def apply_kernel(model: HFModel, kernel: type[MetaKernel], /, **kwargs) -> 'HFModel':
|
||||
def apply_kernel(model: HFModel, kernel: type[MetaKernel], /, **kwargs) -> "HFModel":
|
||||
"""Call the MetaKernel's `apply` to perform the replacement.
|
||||
|
||||
Corresponding replacement logic is maintained inside each kernel; the only
|
||||
@@ -145,4 +133,6 @@ def apply_kernel(model: HFModel, kernel: type[MetaKernel], /, **kwargs) -> 'HFMo
|
||||
if issubclass(kernel, MetaKernel) and kernel.device == get_available_accelerator().type:
|
||||
return kernel.apply(model, **kwargs)
|
||||
|
||||
raise ValueError(f"{kernel} must be a MetaKernel instance, or the kernel don't match the device type. got {kernel.device} and {get_available_accelerator().type} instead.")
|
||||
raise ValueError(
|
||||
f"{kernel} must be a MetaKernel instance, or the kernel don't match the device type. got {kernel.device} and {get_available_accelerator().type} instead."
|
||||
)
|
||||
|
||||
@@ -65,7 +65,6 @@ class NpuRMSNormKernel(MetaRMSNormKernel):
|
||||
for name, module in model.named_modules():
|
||||
# Match any module whose class name contains "RMSNorm"
|
||||
if re.search(rms_norm_pattern, module.__class__.__name__):
|
||||
|
||||
# Bind function as an instance method to preserve `self` semantics
|
||||
# and replace the original forward
|
||||
module.forward = types.MethodType(cls.kernel, module)
|
||||
|
||||
@@ -59,7 +59,7 @@ class NpuRoPEKernel(MetaRoPEKernel):
|
||||
KERNEL_REGISTRY.register(kernel_type, device_type, cls)
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model, **kwargs) -> 'HFModel':
|
||||
def apply(cls, model, **kwargs) -> "HFModel":
|
||||
"""Apply RoPE acceleration by monkey-patching `apply_rotary_pos_emb`.
|
||||
|
||||
This function iterates through the model's modules to find attention layers,
|
||||
@@ -96,7 +96,7 @@ class NpuQwen2VLRoPEKernel(MetaRoPEKernel):
|
||||
KERNEL_REGISTRY.register(kernel_type, device_type, cls)
|
||||
|
||||
@classmethod
|
||||
def apply(cls, model, **kwargs) -> 'HFModel':
|
||||
def apply(cls, model, **kwargs) -> "HFModel":
|
||||
"""Apply RoPE acceleration by monkey-patching `apply_rotary_pos_emb`.
|
||||
|
||||
This function iterates through the model's modules to find attention layers,
|
||||
|
||||
@@ -23,25 +23,25 @@ def get_available_accelerator():
|
||||
"""
|
||||
accelerator = torch.accelerator.current_accelerator()
|
||||
if accelerator is None:
|
||||
return torch.device('cpu')
|
||||
return torch.device("cpu")
|
||||
return accelerator
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_npu_available():
|
||||
return get_available_accelerator().type == 'npu'
|
||||
return get_available_accelerator().type == "npu"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_cuda_available():
|
||||
return get_available_accelerator().type == 'cuda'
|
||||
return get_available_accelerator().type == "cuda"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_xpu_available():
|
||||
return get_available_accelerator().type == 'xpu'
|
||||
return get_available_accelerator().type == "xpu"
|
||||
|
||||
|
||||
@lru_cache
|
||||
def is_torch_mps_available():
|
||||
return get_available_accelerator().type == 'mps'
|
||||
return get_available_accelerator().type == "mps"
|
||||
|
||||
@@ -19,11 +19,10 @@ from transformers import AutoModelForCausalLM
|
||||
|
||||
|
||||
class TestKernelPlugin(unittest.TestCase):
|
||||
|
||||
@patch('torch.accelerator.current_accelerator')
|
||||
@patch("torch.accelerator.current_accelerator")
|
||||
def test_apply_kernel(self, mock_get_accelerator):
|
||||
mock_device = MagicMock()
|
||||
mock_device.type = 'npu'
|
||||
mock_device.type = "npu"
|
||||
mock_get_accelerator.return_value = mock_device
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
||||
@@ -31,7 +30,6 @@ class TestKernelPlugin(unittest.TestCase):
|
||||
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
||||
original_swiglu_forward = model.model.layers[0].mlp.forward
|
||||
|
||||
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.mlp import npu_swiglu
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.registry import apply_kernel
|
||||
from llamafactory.v1.plugins.model_plugins.kernels.rms_norm import npu_rms_norm
|
||||
|
||||
Reference in New Issue
Block a user