match api with OpenAI format
Former-commit-id: 9cbe2b98b024393817e86ff8e3ff1636776fa263
This commit is contained in:
232
src/api_demo.py
232
src/api_demo.py
@@ -2,157 +2,157 @@
|
||||
# Implements API for fine-tuned models.
|
||||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
# Request:
|
||||
# curl http://127.0.0.1:8000 --header 'Content-Type: application/json' --data '{"prompt": "Hello there!", "history": []}'
|
||||
|
||||
# Response:
|
||||
# {
|
||||
# "response": "'Hi there!'",
|
||||
# "history": "[('Hello there!', 'Hi there!')]",
|
||||
# "status": 200,
|
||||
# "time": "2000-00-00 00:00:00"
|
||||
# }
|
||||
|
||||
|
||||
import json
|
||||
import datetime
|
||||
import time
|
||||
import torch
|
||||
import uvicorn
|
||||
from fastapi import FastAPI
|
||||
from threading import Thread
|
||||
from fastapi import FastAPI, Request
|
||||
from starlette.responses import StreamingResponse
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
from transformers import TextIteratorStreamer
|
||||
from starlette.responses import StreamingResponse
|
||||
from typing import Any, Dict, List, Literal, Optional, Union
|
||||
|
||||
from utils import Template, load_pretrained, prepare_infer_args, get_logits_processor
|
||||
from utils import (
|
||||
Template,
|
||||
load_pretrained,
|
||||
prepare_infer_args,
|
||||
get_logits_processor
|
||||
)
|
||||
|
||||
|
||||
def torch_gc():
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
for device_id in range(num_gpus):
|
||||
with torch.cuda.device(device_id):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
class ChatMessage(BaseModel):
|
||||
role: Literal["system", "user", "assistant"]
|
||||
content: str
|
||||
|
||||
json_post_raw = await request.json()
|
||||
prompt = json_post_raw.get("messages")[-1]["content"]
|
||||
history = json_post_raw.get("messages")[:-1]
|
||||
max_token = json_post_raw.get("max_tokens", None)
|
||||
top_p = json_post_raw.get("top_p", None)
|
||||
temperature = json_post_raw.get("temperature", None)
|
||||
stream = check_stream(json_post_raw.get("stream"))
|
||||
|
||||
if stream:
|
||||
generate = predict(prompt, max_token, top_p, temperature, history)
|
||||
return StreamingResponse(generate, media_type="text/event-stream")
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[Literal["system", "user", "assistant"]] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
input_ids = tokenizer([prompt_template.get_prompt(prompt, history, source_prefix)], return_tensors="pt")[
|
||||
"input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_new_tokens: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[Literal["stop", "length"]]
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
model: str
|
||||
object: str
|
||||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest):
|
||||
global model, tokenizer, source_prefix
|
||||
|
||||
query = request.messages[-1].content
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
source_prefix = prev_messages.pop(0).content
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
for i in range(0, len(prev_messages), 2):
|
||||
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||
|
||||
inputs = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")
|
||||
inputs = inputs.to(model.device)
|
||||
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["input_ids"] = input_ids
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
gen_kwargs["max_new_tokens"] = max_token if max_token else gen_kwargs["max_new_tokens"]
|
||||
gen_kwargs["top_p"] = top_p if top_p else gen_kwargs["top_p"]
|
||||
gen_kwargs["temperature"] = temperature if temperature else gen_kwargs["temperature"]
|
||||
gen_kwargs.update({
|
||||
"input_ids": inputs["input_ids"],
|
||||
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
|
||||
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
|
||||
"max_new_tokens": request.max_new_tokens if request.max_new_tokens else gen_kwargs["max_new_tokens"],
|
||||
"logits_processor": get_logits_processor()
|
||||
})
|
||||
|
||||
if request.stream:
|
||||
generate = predict(gen_kwargs, request.model)
|
||||
return StreamingResponse(generate, media_type="text/event-stream")
|
||||
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
|
||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
||||
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
log = (
|
||||
"["
|
||||
+ time
|
||||
+ "] "
|
||||
+ "\", prompt:\""
|
||||
+ prompt
|
||||
+ "\", response:\""
|
||||
+ repr(response)
|
||||
+ "\""
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop"
|
||||
)
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
def check_stream(stream):
|
||||
if isinstance(stream, bool):
|
||||
# stream 是布尔类型,直接使用
|
||||
stream_value = stream
|
||||
else:
|
||||
# 不是布尔类型,尝试进行类型转换
|
||||
if isinstance(stream, str):
|
||||
stream = stream.lower()
|
||||
if stream in ["true", "false"]:
|
||||
# 使用字符串值转换为布尔值
|
||||
stream_value = stream == "true"
|
||||
else:
|
||||
# 非法的字符串值
|
||||
stream_value = False
|
||||
else:
|
||||
# 非布尔类型也非字符串类型
|
||||
stream_value = False
|
||||
return stream_value
|
||||
|
||||
|
||||
async def predict(query, max_length, top_p, temperature, history):
|
||||
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
|
||||
global model, tokenizer
|
||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
gen_kwargs = {
|
||||
"input_ids": input_ids,
|
||||
"do_sample": generating_args.do_sample,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"num_beams": generating_args.num_beams,
|
||||
"max_length": max_length,
|
||||
"repetition_penalty": generating_args.repetition_penalty,
|
||||
"logits_processor": get_logits_processor(),
|
||||
"streamer": streamer
|
||||
}
|
||||
gen_kwargs["streamer"] = streamer
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(role="assistant"),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
for new_text in streamer:
|
||||
answer = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": new_text
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
yield "data: " + json.dumps(answer) + '\n\n'
|
||||
if len(new_text) == 0:
|
||||
continue
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(content=new_text),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(),
|
||||
finish_reason="stop"
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object = "chat.completion.chunk")
|
||||
yield "data: {}\n\n".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user