add MMLU and C-Eval script
Former-commit-id: 3403f876127b4b99c5e3edb2834cc3b9a3a0063f
This commit is contained in:
54
README_zh.md
54
README_zh.md
@@ -14,15 +14,17 @@
|
||||
|
||||
## 更新日志
|
||||
|
||||
[23/09/10] 现在我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
|
||||
[23/09/23] 我们在项目中集成了 MMLU 和 C-Eval 评估集。使用方法请参阅[此示例](#模型评估mmlu-和-c-eval)。
|
||||
|
||||
[23/08/18] 现在我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能。
|
||||
[23/09/10] 我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
|
||||
|
||||
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
||||
[23/08/18] 我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能。
|
||||
|
||||
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)。
|
||||
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
||||
|
||||
[23/07/31] 现在我们支持了**数据流式加载**。请尝试使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。
|
||||
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
|
||||
|
||||
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。
|
||||
|
||||
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
|
||||
|
||||
@@ -34,7 +36,7 @@
|
||||
|
||||
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
|
||||
|
||||
[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
|
||||
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
|
||||
|
||||
## 模型
|
||||
|
||||
@@ -404,27 +406,7 @@ python src/web_demo.py \
|
||||
--checkpoint_dir path_to_checkpoint
|
||||
```
|
||||
|
||||
### 指标评估(BLEU 分数和汉语 ROUGE 分数)
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--do_eval \
|
||||
--dataset alpaca_gpt4_zh \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--checkpoint_dir path_to_checkpoint \
|
||||
--output_dir path_to_eval_result \
|
||||
--per_device_eval_batch_size 8 \
|
||||
--max_samples 100 \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
||||
|
||||
### 模型预测
|
||||
### 指标评估与模型预测(BLEU 分数和汉语 ROUGE 分数)
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
@@ -441,6 +423,24 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--predict_with_generate
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
||||
|
||||
### 模型评估(MMLU 和 C-Eval)
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 python evaluation/evaluate.py \
|
||||
--model_name_or_path path_to_llama_model \
|
||||
--finetuning_type lora \
|
||||
--checkpoint_dir path_to_checkpoint \
|
||||
--template vanilla \
|
||||
--task ceval \
|
||||
--split validation \
|
||||
--lang zh \
|
||||
--n_shot 5 \
|
||||
--batch_size 4
|
||||
```
|
||||
|
||||
## 协议
|
||||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||
|
||||
Reference in New Issue
Block a user