add cal_ppl script
Former-commit-id: 947068c11c0be00db2cecddb2c5842a0d6e2c321
This commit is contained in:
79
scripts/cal_ppl.py
Normal file
79
scripts/cal_ppl.py
Normal file
@@ -0,0 +1,79 @@
|
||||
# coding=utf-8
|
||||
# Calculates the ppl of pre-trained models.
|
||||
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
|
||||
|
||||
import json
|
||||
from typing import Dict
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
||||
|
||||
from llmtuner.data import get_dataset
|
||||
from llmtuner.extras.constants import IGNORE_INDEX
|
||||
from llmtuner.hparams import get_train_args
|
||||
from llmtuner.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
def cal_ppl(
|
||||
model_name_or_path: str,
|
||||
batch_size: int = 4,
|
||||
stage: str = "sft",
|
||||
dataset: str = "alpaca_en",
|
||||
dataset_dir: str = "data",
|
||||
template: str = "default",
|
||||
cutoff_len: int = 1024,
|
||||
train_on_prompt: bool = False,
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
dict(
|
||||
stage=stage,
|
||||
model_name_or_path=model_name_or_path,
|
||||
dataset=dataset,
|
||||
dataset_dir=dataset_dir,
|
||||
template=template,
|
||||
cutoff_len=cutoff_len,
|
||||
train_on_prompt=train_on_prompt,
|
||||
output_dir="dummy_dir",
|
||||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
|
||||
criterion = torch.nn.CrossEntropyLoss(reduction="none")
|
||||
perplexities = []
|
||||
batch: Dict[str, "torch.Tensor"]
|
||||
with torch.no_grad():
|
||||
for batch in tqdm(dataloader):
|
||||
batch = batch.to(model.device)
|
||||
outputs = model(**batch)
|
||||
shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
|
||||
shift_labels: "torch.Tensor" = batch["labels"][..., 1:]
|
||||
loss_mask = shift_labels != IGNORE_INDEX
|
||||
flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1)
|
||||
flatten_labels = shift_labels.contiguous().view(-1)
|
||||
token_logps: "torch.Tensor" = criterion(flatten_logits, flatten_labels)
|
||||
token_logps = token_logps.contiguous().view(shift_logits.size(0), -1)
|
||||
sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
|
||||
perplexities.extend(sentence_logps.exp().tolist())
|
||||
|
||||
with open("ppl.json", "w", encoding="utf-8") as f:
|
||||
json.dump(perplexities, f, indent=2)
|
||||
|
||||
print("Perplexities have been saved at ppl.json.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(cal_ppl)
|
||||
Reference in New Issue
Block a user