Former-commit-id: 81176fe226da89eace89cb202bad68e73b7c2a02
This commit is contained in:
fzc8578
2025-01-04 11:11:15 +08:00
parent 5504b5254c
commit 2c120aa0df
7 changed files with 164 additions and 2 deletions

View File

@@ -2,6 +2,7 @@ import math
from copy import deepcopy
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
import re
import numpy as np
import torch
@@ -249,6 +250,130 @@ class BasePlugin:
return {}
class CpmOPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
for message in messages:
content = message["content"]
while IMAGE_PLACEHOLDER in content:
num_image_tokens += 1
content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1)
message["content"] = content.replace("{{image}}", "(<image>./</image>)")
if num_image_tokens>0:
mm_inputs = self._get_mm_inputs(images, videos, processor)
pattern = "(<image>./</image>)"
images, image_sizes, tgt_sizes = mm_inputs["pixel_values"], mm_inputs["image_sizes"], mm_inputs["tgt_sizes"]
input_ids_list = []
image_bounds_list = []
image_index = 0
for index, message in enumerate(messages):
text = message['content']
image_tags = re.findall(pattern, text)
text_chunks = text.split(pattern)
final_text = ""
for i in range(len(image_tags)):
final_text = final_text + text_chunks[i] + \
image_processor.get_slice_image_placeholder(
image_sizes[image_index][i],
i,
image_processor.max_slice_nums,
image_processor.use_image_id,
)
image_index += 1
final_text += text_chunks[-1]
messages[index]['content'] = final_text
# print(messages)
if len(images) != num_image_tokens:
raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.")
return messages
@override
def _get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
images,
image_resolution=getattr(processor, "image_resolution", 512 * 512),
)
image_inputs = image_processor(images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt")
mm_inputs.update(image_inputs)
if len(videos) != 0:
videos = self._regularize_videos(
videos,
image_resolution=getattr(processor, "video_resolution", 128 * 128),
video_fps=getattr(processor, "video_fps", 2.0),
video_maxlen=getattr(processor, "video_maxlen", 64),
)
return mm_inputs
@override
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
batch_ids: Sequence[List[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
self._validate_input(images, videos)
mm_inputs = self._get_mm_inputs(images, videos, processor)
image_bounds_list = []
position_ids = []
for input_ids in batch_ids:
input_ids_ = torch.tensor(input_ids)
start_cond = (input_ids_ == processor.tokenizer.im_start_id) | (input_ids_ == processor.tokenizer.slice_start_id)
end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id)
image_start_tokens = torch.where(start_cond)[0]
image_start_tokens += 1
image_end_tokens = torch.where(end_cond)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bounds = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
image_bounds_list.append(image_bounds)
position_ids_ = list(range(input_ids_.size(0)))
# print(input_ids_.shape, len(position_ids_)
position_ids.append(position_ids_)
position_ids = torch.tensor(position_ids, dtype=torch.int64)
mm_inputs.update({
"image_bound": image_bounds_list,
"position_ids": position_ids,
})
return mm_inputs
class LlavaPlugin(BasePlugin):
@override
def process_messages(
@@ -790,6 +915,7 @@ class MllamaPlugin(BasePlugin):
PLUGINS = {
"base": BasePlugin,
"cpm_o": CpmOPlugin,
"llava": LlavaPlugin,
"llava_next": LlavaNextPlugin,
"llava_next_video": LlavaNextVideoPlugin,