improve KTO impl., replace datasets
Former-commit-id: e56a57ddcf061de6e4acc8679f7dbf0b68364986
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
from collections import defaultdict
|
||||
from contextlib import nullcontext
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
@@ -13,7 +13,7 @@ from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
@@ -24,6 +24,7 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
model: Union["PreTrainedModel", torch.nn.Module],
|
||||
ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
@@ -33,6 +34,7 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
disable_dropout_in_model(ref_model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
@@ -43,15 +45,15 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.ref_model = ref_model
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# KTO parameter
|
||||
# kto hyperparams
|
||||
self.beta = finetuning_args.kto_beta
|
||||
self.desirable_weight = finetuning_args.kto_chosen_weight
|
||||
self.undesirable_weight = finetuning_args.kto_rejected_weight
|
||||
self.ftx_gamma = finetuning_args.kto_ftx
|
||||
self.desirable_weight = finetuning_args.kto_desirable_weight
|
||||
self.undesirable_weight = finetuning_args.kto_undesirable_weight
|
||||
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
@@ -82,78 +84,85 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps.nanmean()
|
||||
|
||||
return -all_logps
|
||||
|
||||
def forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
with torch.no_grad():
|
||||
KL_logits = model(
|
||||
batch["KL_completion_input_ids"],
|
||||
attention_mask=batch["KL_completion_attention_mask"],
|
||||
).logits
|
||||
kl_logits = model(
|
||||
input_ids=batch["kl_input_ids"],
|
||||
attention_mask=batch["kl_attention_mask"],
|
||||
return_dict=True,
|
||||
use_cache=False,
|
||||
).logits.to(torch.float32)
|
||||
|
||||
completion_logits = model(
|
||||
batch["input_ids"],
|
||||
target_logits = model(
|
||||
input_ids=batch["input_ids"],
|
||||
attention_mask=batch["attention_mask"],
|
||||
).logits
|
||||
return_dict=True,
|
||||
use_cache=False,
|
||||
).logits.to(torch.float32)
|
||||
|
||||
completion_logps = self.get_batch_logps(
|
||||
completion_logits,
|
||||
batch["labels"],
|
||||
target_logps = self.get_batch_logps(
|
||||
logits=target_logits,
|
||||
labels=batch["labels"],
|
||||
average_log_prob=False,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
|
||||
KL_logps = self.get_batch_logps(
|
||||
KL_logits,
|
||||
batch["kl_labels"],
|
||||
kl_logps = self.get_batch_logps(
|
||||
logits=kl_logits,
|
||||
labels=batch["kl_labels"],
|
||||
average_log_prob=False,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
|
||||
if completion_logps.shape[0] != len(batch["tag"]):
|
||||
raise ValueError(
|
||||
"There is a mismatch between the number of examples in this batch and the number of "
|
||||
"examples for which an output sequence was predicted."
|
||||
)
|
||||
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["tag"][i]]
|
||||
rejected_idx = [i for i in range(completion_logps.shape[0]) if not batch["tag"][i]]
|
||||
if len(target_logps) != len(batch["kto_tags"]):
|
||||
raise ValueError("Mismatched shape of inputs and labels.")
|
||||
|
||||
chosen_logps = completion_logps[chosen_idx, ...]
|
||||
rejected_logps = completion_logps[rejected_idx, ...]
|
||||
chosen_idx = [i for i in range(len(target_logps)) if batch["kto_tags"][i]]
|
||||
rejected_idx = [i for i in range(len(target_logps)) if not batch["kto_tags"][i]]
|
||||
|
||||
chosen_logits = completion_logits[chosen_idx, ...]
|
||||
rejected_logits = completion_logits[rejected_idx, ...]
|
||||
chosen_logps = target_logps[chosen_idx, ...]
|
||||
rejected_logps = target_logps[rejected_idx, ...]
|
||||
|
||||
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, KL_logps)
|
||||
chosen_logits = target_logits[chosen_idx, ...]
|
||||
rejected_logits = target_logits[rejected_idx, ...]
|
||||
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, kl_logps
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model,
|
||||
batch: Dict[str, Union[List, torch.LongTensor]],
|
||||
):
|
||||
"""Compute the KTO loss and other metrics for the given batch of inputs for train or test."""
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()}
|
||||
|
||||
(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_chosen_logits,
|
||||
policy_rejected_logits,
|
||||
policy_KL_logps,
|
||||
_,
|
||||
policy_kl_logps,
|
||||
) = self.forward(model, batch)
|
||||
|
||||
with torch.no_grad():
|
||||
@@ -163,27 +172,29 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
reference_KL_logps,
|
||||
reference_kl_logps,
|
||||
) = self.forward(ref_model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards, kl = self.kto_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
policy_KL_logps,
|
||||
policy_kl_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
reference_KL_logps,
|
||||
reference_kl_logps,
|
||||
)
|
||||
losses = losses.nanmean()
|
||||
if self.ftx_gamma > 1e-6 and len(batch["labels"][batch['tag']])>0:
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, batch["labels"][batch['tag']])
|
||||
|
||||
if self.ftx_gamma > 1e-6 and len(policy_chosen_logps) > 0: # remember to rescale
|
||||
sft_loss = self.sft_loss(policy_chosen_logits, batch["labels"][batch["kto_tags"]])
|
||||
losses += self.ftx_gamma * sft_loss.nanmean() / len(policy_chosen_logits) * len(batch["labels"])
|
||||
|
||||
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device)
|
||||
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device)
|
||||
@@ -203,4 +214,4 @@ class CustomKTOTrainer(KTOTrainer):
|
||||
|
||||
metrics["kl"] = kl.item()
|
||||
|
||||
return losses, metrics
|
||||
return losses, metrics
|
||||
|
||||
Reference in New Issue
Block a user