update ppo trainer
Former-commit-id: caa525a5c6f228b9ad71387d1fe4f1c2ffa2479e
This commit is contained in:
@@ -82,13 +82,16 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
raise ValueError("`resume_from_checkpoint` will be supported in the future version.")
|
||||
|
||||
total_train_batch_size = (
|
||||
self.args.per_device_train_batch_size * self.args.gradient_accumulation_steps * self.args.world_size
|
||||
self.args.per_device_train_batch_size
|
||||
* self.args.gradient_accumulation_steps
|
||||
* self.finetuning_args.ppo_buffer_size
|
||||
* self.args.world_size
|
||||
)
|
||||
if self.args.max_steps > 0:
|
||||
num_examples = total_train_batch_size * self.args.max_steps
|
||||
num_train_epochs = sys.maxsize
|
||||
max_steps = self.args.max_steps
|
||||
steps_in_epoch = self.args.max_steps * self.args.gradient_accumulation_steps
|
||||
steps_in_epoch = self.args.max_steps
|
||||
else:
|
||||
len_dataloader = len(self.dataloader)
|
||||
num_examples = len(self.dataset)
|
||||
@@ -103,13 +106,16 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
||||
|
||||
if self.is_world_process_zero():
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {num_examples}")
|
||||
logger.info(f" Num Epochs = {num_train_epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
|
||||
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
|
||||
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
|
||||
logger.info(f" Total optimization steps = {max_steps}")
|
||||
logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}")
|
||||
logger.info(" Num examples = {}".format(num_examples))
|
||||
logger.info(" Num Epochs = {}".format(num_train_epochs))
|
||||
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
|
||||
logger.info(" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
|
||||
total_train_batch_size
|
||||
))
|
||||
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
|
||||
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
|
||||
logger.info(" Total training steps = {}".format(max_steps))
|
||||
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
dataiter = iter(self.dataloader)
|
||||
|
||||
Reference in New Issue
Block a user