[misc] upgrade format to py39 (#7256)

This commit is contained in:
hoshi-hiyouga
2025-03-12 00:08:41 +08:00
committed by GitHub
parent 5995800bce
commit 264538cb26
113 changed files with 984 additions and 1407 deletions

View File

@@ -17,7 +17,7 @@
# limitations under the License.
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Optional
from typing import TYPE_CHECKING, Optional
import numpy as np
import torch
@@ -45,9 +45,7 @@ if is_rouge_available():
def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor":
r"""
Computes the token with the largest likelihood to reduce memory footprint.
"""
r"""Compute the token with the largest likelihood to reduce memory footprint."""
if isinstance(logits, (list, tuple)):
if logits[0].dim() == 3: # (batch_size, seq_len, vocab_size)
logits = logits[0]
@@ -62,11 +60,9 @@ def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "tor
@dataclass
class ComputeAccuracy:
r"""
Computes accuracy and supports `batch_eval_metrics`.
"""
r"""Compute accuracy and support `batch_eval_metrics`."""
def _dump(self) -> Optional[Dict[str, float]]:
def _dump(self) -> Optional[dict[str, float]]:
result = None
if hasattr(self, "score_dict"):
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()}
@@ -77,7 +73,7 @@ class ComputeAccuracy:
def __post_init__(self):
self._dump()
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[dict[str, float]]:
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)
for i in range(len(preds)):
pred, label = preds[i, :-1], labels[i, 1:]
@@ -90,15 +86,14 @@ class ComputeAccuracy:
@dataclass
class ComputeSimilarity:
r"""
Computes text similarity scores and supports `batch_eval_metrics`.
r"""Compute text similarity scores and support `batch_eval_metrics`.
Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer.
"""
tokenizer: "PreTrainedTokenizer"
def _dump(self) -> Optional[Dict[str, float]]:
def _dump(self) -> Optional[dict[str, float]]:
result = None
if hasattr(self, "score_dict"):
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()}
@@ -109,7 +104,7 @@ class ComputeSimilarity:
def __post_init__(self):
self._dump()
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[dict[str, float]]:
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)