[misc] upgrade format to py39 (#7256)

This commit is contained in:
hoshi-hiyouga
2025-03-12 00:08:41 +08:00
committed by GitHub
parent 5995800bce
commit 264538cb26
113 changed files with 984 additions and 1407 deletions

View File

@@ -1,10 +1,11 @@
import inspect
import math
import re
from collections.abc import Sequence
from copy import deepcopy
from dataclasses import dataclass
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Type, TypedDict, Union
from typing import TYPE_CHECKING, Optional, TypedDict, Union
import numpy as np
import torch
@@ -58,12 +59,12 @@ if TYPE_CHECKING:
def _get_paligemma_token_type_ids(
imglens: Sequence[int], seqlens: Sequence[int], processor: "ProcessorMixin"
) -> List[List[int]]:
r"""
Gets paligemma token type ids for computing loss.
) -> list[list[int]]:
r"""Get paligemma token type ids for computing loss.
Returns:
batch_token_type_ids: shape (batch_size, sequence_length)
"""
batch_token_type_ids = []
for imglen, seqlen in zip(imglens, seqlens):
@@ -87,11 +88,9 @@ class MMPluginMixin:
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
) -> None:
r"""
Validates if this model accepts the input modalities.
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None)
feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None)
r"""Validate if this model accepts the input modalities."""
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
if len(images) != 0 and self.image_token is None:
raise ValueError(
"This model does not support image input. Please check whether the correct `template` is used."
@@ -119,9 +118,7 @@ class MMPluginMixin:
def _preprocess_image(
self, image: "ImageObject", image_max_pixels: int, image_min_pixels: int, **kwargs
) -> "ImageObject":
r"""
Pre-processes a single image.
"""
r"""Pre-process a single image."""
if (image.width * image.height) > image_max_pixels:
resize_factor = math.sqrt(image_max_pixels / (image.width * image.height))
width, height = int(image.width * resize_factor), int(image.height * resize_factor)
@@ -139,10 +136,8 @@ class MMPluginMixin:
def _get_video_sample_indices(
self, video_stream: "Stream", video_fps: float, video_maxlen: int, **kwargs
) -> List[int]:
r"""
Computes video sample indices according to fps.
"""
) -> list[int]:
r"""Compute video sample indices according to fps."""
total_frames = video_stream.frames
if total_frames == 0: # infinite video
return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32)
@@ -151,10 +146,8 @@ class MMPluginMixin:
sample_frames = min(total_frames, video_maxlen, sample_frames)
return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
def _regularize_images(self, images: Sequence["ImageInput"], **kwargs) -> List["ImageObject"]:
r"""
Regularizes images to avoid error. Including reading and pre-processing.
"""
def _regularize_images(self, images: Sequence["ImageInput"], **kwargs) -> list["ImageObject"]:
r"""Regularize images to avoid error. Including reading and pre-processing."""
results = []
for image in images:
if isinstance(image, str):
@@ -174,16 +167,14 @@ class MMPluginMixin:
return results
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]:
r"""
Regularizes videos to avoid error. Including reading, resizing and converting.
"""
def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> list[list["ImageObject"]]:
r"""Regularizes videos to avoid error. Including reading, resizing and converting."""
results = []
for video in videos:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
frames: List["ImageObject"] = []
frames: list[ImageObject] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
@@ -194,10 +185,8 @@ class MMPluginMixin:
return results
def _regularize_audios(self, audios: Sequence["AudioInput"], sampling_rate: float, **kwargs) -> List["NDArray"]:
r"""
Regularizes audios to avoid error. Including reading and resampling.
"""
def _regularize_audios(self, audios: Sequence["AudioInput"], sampling_rate: float, **kwargs) -> list["NDArray"]:
r"""Regularizes audios to avoid error. Including reading and resampling."""
results = []
for audio in audios:
if isinstance(audio, str):
@@ -216,9 +205,8 @@ class MMPluginMixin:
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs.
) -> dict[str, "torch.Tensor"]:
r"""Process visual inputs.
Returns: (llava and paligemma)
pixel_values: tensor with shape (B, C, H, W)
@@ -229,9 +217,9 @@ class MMPluginMixin:
It holds num_patches == torch.prod(image_grid_thw)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None)
video_processor: "BaseImageProcessor" = getattr(processor, "video_processor", image_processor)
feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None)
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
video_processor: BaseImageProcessor = getattr(processor, "video_processor", image_processor)
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
@@ -278,31 +266,27 @@ class MMPluginMixin:
class BasePlugin(MMPluginMixin):
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
Pre-processes input messages before tokenization for VLMs.
"""
) -> list[dict[str, str]]:
r"""Pre-processes input messages before tokenization for VLMs."""
self._validate_input(processor, images, videos, audios)
return messages
def process_token_ids(
self,
input_ids: List[int],
labels: Optional[List[int]],
input_ids: list[int],
labels: Optional[list[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
r"""
Pre-processes token ids after tokenization for VLMs.
"""
) -> tuple[list[int], Optional[list[int]]]:
r"""Pre-processes token ids after tokenization for VLMs."""
self._validate_input(processor, images, videos, audios)
return input_ids, labels
@@ -314,20 +298,21 @@ class BasePlugin(MMPluginMixin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
r"""
Builds batched multimodal inputs for VLMs.
) -> dict[str, Union[list[int], "torch.Tensor"]]:
r"""Build batched multimodal inputs for VLMs.
Arguments:
images: a list of image inputs, shape (num_images,)
videos: a list of video inputs, shape (num_videos,)
audios: a list of audio inputs, shape (num_audios,)
imglens: number of images in each sample, shape (batch_size,)
vidlens: number of videos in each sample, shape (batch_size,)
audlens: number of audios in each sample, shape (batch_size,)
batch_ids: token ids of input samples, shape (batch_size, seq_len)
processor: a processor for pre-processing images and videos
"""
self._validate_input(processor, images, videos, audios)
return {}
@@ -338,12 +323,12 @@ class LlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen") if self.expand_mm_tokens else 1
@@ -370,9 +355,9 @@ class LlavaPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@@ -382,12 +367,12 @@ class LlavaNextPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
@@ -426,9 +411,9 @@ class LlavaNextPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@@ -438,12 +423,12 @@ class LlavaNextVideoPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
@@ -502,9 +487,9 @@ class LlavaNextVideoPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@@ -514,16 +499,16 @@ class MiniCPMVPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens, num_video_tokens, num_audio_tokens = 0, 0, 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
mm_inputs = {}
audio_inputs = {}
if len(images) != 0 and len(videos) != 0:
@@ -619,9 +604,9 @@ class MiniCPMVPlugin(BasePlugin):
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
**kwargs,
) -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None)
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
feature_extractor: SequenceFeatureExtractor = getattr(processor, "feature_extractor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
@@ -691,9 +676,9 @@ class MiniCPMVPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
# image bound
image_bounds_list = []
@@ -756,12 +741,12 @@ class MllamaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
@@ -782,10 +767,9 @@ class MllamaPlugin(BasePlugin):
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
imglens: List[int],
) -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs for mllama because its image processor only accepts List[List[ImageInput]].
imglens: list[int],
) -> dict[str, "torch.Tensor"]:
r"""Process visual inputs for mllama because its image processor only accepts List[List[ImageInput]].
Returns:
pixel_values: tensor with shape
@@ -794,8 +778,9 @@ class MllamaPlugin(BasePlugin):
aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1).
aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4).
num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1).
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
mm_inputs = {}
if len(images) > 0:
images = self._regularize_images(
@@ -821,9 +806,9 @@ class MllamaPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens)
if mm_inputs:
@@ -850,12 +835,12 @@ class PaliGemmaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens = 0
messages = deepcopy(messages)
@@ -875,14 +860,14 @@ class PaliGemmaPlugin(BasePlugin):
@override
def process_token_ids(
self,
input_ids: List[int],
labels: Optional[List[int]],
input_ids: list[int],
labels: Optional[list[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
) -> tuple[list[int], Optional[list[int]]]:
self._validate_input(processor, images, videos, audios)
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen") if self.expand_mm_tokens else 0 # skip mm token
@@ -902,9 +887,9 @@ class PaliGemmaPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
seqlens = [len(input_ids) for input_ids in batch_ids]
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
@@ -917,12 +902,12 @@ class PixtralPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
patch_size = getattr(processor, "patch_size")
image_token = getattr(processor, "image_token")
@@ -968,9 +953,9 @@ class PixtralPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
mm_inputs.pop("image_sizes", None)
@@ -982,12 +967,12 @@ class Qwen2AudioPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
bos_token: str = getattr(processor, "audio_bos_token")
eos_token: str = getattr(processor, "audio_eos_token")
@@ -1028,9 +1013,9 @@ class Qwen2AudioPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@@ -1057,13 +1042,13 @@ class Qwen2VLPlugin(BasePlugin):
@override
def _regularize_videos(
self, videos: Sequence["VideoInput"], **kwargs
) -> Tuple[List[List["ImageObject"]], List[float]]:
) -> tuple[list[list["ImageObject"]], list[float]]:
results, fps_per_video = [], []
for video in videos:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
sample_indices = self._get_video_sample_indices(video_stream, **kwargs)
frames: List["ImageObject"] = []
frames: list[ImageObject] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
@@ -1088,8 +1073,8 @@ class Qwen2VLPlugin(BasePlugin):
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None)
) -> dict[str, "torch.Tensor"]:
image_processor: BaseImageProcessor = getattr(processor, "image_processor", None)
mm_inputs = {}
if len(images) != 0:
images = self._regularize_images(
@@ -1115,16 +1100,16 @@ class Qwen2VLPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if self.expand_mm_tokens:
@@ -1176,13 +1161,13 @@ class Qwen2VLPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
mm_inputs = self._get_mm_inputs(images, videos, audios, processor)
fps_per_video = mm_inputs.pop("fps_per_video", [])
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_processor: BaseImageProcessor = getattr(processor, "image_processor")
if "second_per_grid_ts" in processor.model_input_names and fps_per_video:
mm_inputs["second_per_grid_ts"] = [image_processor.temporal_patch_size / fps for fps in fps_per_video]
@@ -1194,12 +1179,12 @@ class VideoLlavaPlugin(BasePlugin):
@override
def process_messages(
self,
messages: Sequence[Dict[str, str]],
messages: Sequence[dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
audios: Sequence["AudioInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
) -> list[dict[str, str]]:
self._validate_input(processor, images, videos, audios)
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
@@ -1255,9 +1240,9 @@ class VideoLlavaPlugin(BasePlugin):
imglens: Sequence[int],
vidlens: Sequence[int],
audlens: Sequence[int],
batch_ids: Sequence[List[int]],
batch_ids: Sequence[list[int]],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
) -> dict[str, Union[list[int], "torch.Tensor"]]:
self._validate_input(processor, images, videos, audios)
return self._get_mm_inputs(images, videos, audios, processor)
@@ -1277,10 +1262,8 @@ PLUGINS = {
}
def register_mm_plugin(name: str, plugin_class: Type["BasePlugin"]) -> None:
r"""
Registers a multimodal plugin.
"""
def register_mm_plugin(name: str, plugin_class: type["BasePlugin"]) -> None:
r"""Register a multimodal plugin."""
if name in PLUGINS:
raise ValueError(f"Multimodal plugin {name} already exists.")
@@ -1293,9 +1276,7 @@ def get_mm_plugin(
video_token: Optional[str] = None,
audio_token: Optional[str] = None,
) -> "BasePlugin":
r"""
Gets plugin for multimodal inputs.
"""
r"""Get plugin for multimodal inputs."""
if name not in PLUGINS:
raise ValueError(f"Multimodal plugin `{name}` not found.")