add autogptq
Former-commit-id: 43321557c272862d9c6531fc48a4569cfc88e4e7
This commit is contained in:
47
tests/auto_gptq.py
Normal file
47
tests/auto_gptq.py
Normal file
@@ -0,0 +1,47 @@
|
||||
# coding=utf-8
|
||||
# Quantizes fine-tuned models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
|
||||
# Usage: python auto_gptq.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
|
||||
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
|
||||
|
||||
|
||||
import fire
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||||
|
||||
|
||||
def quantize(input_dir: str, output_dir: str, data_file: str):
|
||||
tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left")
|
||||
|
||||
def format_example(examples):
|
||||
prefix=("A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions.")
|
||||
texts = []
|
||||
for i in range(len(examples["instruction"])):
|
||||
prompt = prefix + "\n"
|
||||
if "history" in examples:
|
||||
for user_query, bot_resp in examples["history"][i]:
|
||||
prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp)
|
||||
prompt += "Human: {}\nAssistant: {}".format(examples["instruction"][i], examples["output"][i])
|
||||
texts.append(prompt)
|
||||
return tokenizer(texts, truncation=True, max_length=1024)
|
||||
|
||||
dataset = load_dataset("json", data_files=data_file)["train"]
|
||||
column_names = list(dataset.column_names)
|
||||
dataset = dataset.select(range(1024))
|
||||
dataset = dataset.map(format_example, batched=True, remove_columns=column_names)
|
||||
dataset = dataset.shuffle()
|
||||
|
||||
quantize_config = BaseQuantizeConfig(
|
||||
bits=4,
|
||||
group_size=128,
|
||||
desc_act=False
|
||||
)
|
||||
|
||||
model = AutoGPTQForCausalLM.from_pretrained(input_dir, quantize_config)
|
||||
model.quantize(dataset)
|
||||
model.save_quantized(output_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(quantize)
|
||||
133
tests/evaluate_zh.py
Normal file
133
tests/evaluate_zh.py
Normal file
@@ -0,0 +1,133 @@
|
||||
# coding=utf-8
|
||||
# Evaluates fine-tuned models automatically.
|
||||
# Usage: python evaluate_zh.py --evalset ceval/ceval-exam:law --split dev --output_file result.json
|
||||
# --api_base http://localhost:8000/v1 --task_type choice --n_samples 100
|
||||
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
|
||||
|
||||
|
||||
import os
|
||||
import fire
|
||||
import json
|
||||
import openai
|
||||
from tqdm import tqdm
|
||||
from typing import Literal, Optional
|
||||
from datasets import load_dataset
|
||||
|
||||
|
||||
def format_example_choice(examples):
|
||||
model_inputs = {"query": [], "label": []}
|
||||
task_template = "请从ABCD四个选项中选出正确的选项,仅输出选项序号。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案:"
|
||||
for i in range(len(examples["id"])):
|
||||
query = task_template.format(
|
||||
question=examples["question"][i],
|
||||
A=examples["A"][i],
|
||||
B=examples["B"][i],
|
||||
C=examples["C"][i],
|
||||
D=examples["D"][i]
|
||||
)
|
||||
label = examples["answer"][i]
|
||||
model_inputs["query"].append(query)
|
||||
model_inputs["label"].append(label)
|
||||
return model_inputs
|
||||
|
||||
|
||||
def format_example_cloze(examples):
|
||||
model_inputs = {"query": [], "label": []}
|
||||
task_template = "请选择正确的答案填空,仅输出正确的选项。\n{question}\n选项:{A}\n{B}\n{C}\n{D}\n答案:"
|
||||
for i in range(len(examples["id"])):
|
||||
query = task_template.format(
|
||||
question=examples["question"][i],
|
||||
A=examples["A"][i],
|
||||
B=examples["B"][i],
|
||||
C=examples["C"][i],
|
||||
D=examples["D"][i]
|
||||
)
|
||||
label = examples[examples["answer"][i]][i]
|
||||
model_inputs["query"].append(query)
|
||||
model_inputs["label"].append(label)
|
||||
return model_inputs
|
||||
|
||||
|
||||
def format_example_openqa(examples):
|
||||
model_inputs = {"query": [], "label": []}
|
||||
task_template = "回答以下问题:{question}\n答案:"
|
||||
for i in range(len(examples["id"])):
|
||||
query = task_template.format(question=examples["question"][i])
|
||||
label = examples[examples["answer"][i]][i]
|
||||
model_inputs["query"].append(query)
|
||||
model_inputs["label"].append(label)
|
||||
return model_inputs
|
||||
|
||||
|
||||
TASK_DICT = {
|
||||
"choice": format_example_choice,
|
||||
"cloze": format_example_cloze,
|
||||
"openqa": format_example_openqa
|
||||
}
|
||||
|
||||
|
||||
EXT2TYPE = {
|
||||
"csv": "csv",
|
||||
"json": "json",
|
||||
"jsonl": "json"
|
||||
}
|
||||
|
||||
|
||||
def evaluate(
|
||||
evalset: str,
|
||||
api_base: str,
|
||||
output_file: str,
|
||||
split: Optional[str] = "val",
|
||||
task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice",
|
||||
n_samples: Optional[int] = 20
|
||||
):
|
||||
|
||||
openai.api_base = api_base
|
||||
openai.api_key = "none"
|
||||
|
||||
if os.path.isfile(evalset):
|
||||
dataset = load_dataset(EXT2TYPE[evalset.split(".")[-1]], data_files=evalset)["train"]
|
||||
elif ":" in evalset:
|
||||
evalset, subset = evalset.split(":")
|
||||
dataset = load_dataset(evalset, subset, split=split)
|
||||
else:
|
||||
dataset = load_dataset(evalset, split=split)
|
||||
|
||||
n_samples = min(len(dataset), n_samples)
|
||||
|
||||
dataset = dataset.map(TASK_DICT[task_type], batched=True)
|
||||
dataset = dataset.select(range(n_samples))
|
||||
|
||||
n_correct = 0
|
||||
predictions = []
|
||||
for example in tqdm(dataset):
|
||||
query, label = example["query"], example["label"]
|
||||
predict = openai.ChatCompletion.create(
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": query}],
|
||||
temperature=0.01,
|
||||
top_p=0.01,
|
||||
max_new_tokens=20
|
||||
).choices[0].message.content
|
||||
|
||||
if task_type == "choice" and predict[0].lower() == label[0].lower():
|
||||
n_correct += 1
|
||||
if task_type == "cloze" and label in [predict[:len(label)], predict[-len(label):]]:
|
||||
n_correct += 1
|
||||
if task_type == "openqa" and label in predict:
|
||||
n_correct += 1
|
||||
|
||||
predictions.append({
|
||||
"query": query,
|
||||
"label": label,
|
||||
"predict": predict
|
||||
})
|
||||
|
||||
print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100))
|
||||
|
||||
with open(output_file, "w", encoding="utf-8") as f:
|
||||
json.dump(predictions, f, indent=2, ensure_ascii=False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(evaluate)
|
||||
Reference in New Issue
Block a user