use pre-commit

Former-commit-id: 7cfede95df22a9ff236788f04159b6b16b8d04bb
This commit is contained in:
hiyouga
2024-10-29 09:07:46 +00:00
parent 8f5921692e
commit 248d5daaff
66 changed files with 1028 additions and 1044 deletions

View File

@@ -57,7 +57,7 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallb
elif finetuning_args.stage == "kto":
run_kto(model_args, data_args, training_args, finetuning_args, callbacks)
else:
raise ValueError("Unknown task: {}.".format(finetuning_args.stage))
raise ValueError(f"Unknown task: {finetuning_args.stage}.")
def export_model(args: Optional[Dict[str, Any]] = None) -> None:
@@ -91,18 +91,18 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
setattr(model.config, "torch_dtype", output_dtype)
model = model.to(output_dtype)
logger.info("Convert model dtype to: {}.".format(output_dtype))
logger.info(f"Convert model dtype to: {output_dtype}.")
model.save_pretrained(
save_directory=model_args.export_dir,
max_shard_size="{}GB".format(model_args.export_size),
max_shard_size=f"{model_args.export_size}GB",
safe_serialization=(not model_args.export_legacy_format),
)
if model_args.export_hub_model_id is not None:
model.push_to_hub(
model_args.export_hub_model_id,
token=model_args.hf_hub_token,
max_shard_size="{}GB".format(model_args.export_size),
max_shard_size=f"{model_args.export_size}GB",
safe_serialization=(not model_args.export_legacy_format),
)
@@ -117,13 +117,13 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
os.path.join(vhead_path, V_HEAD_SAFE_WEIGHTS_NAME),
os.path.join(model_args.export_dir, V_HEAD_SAFE_WEIGHTS_NAME),
)
logger.info("Copied valuehead to {}.".format(model_args.export_dir))
logger.info(f"Copied valuehead to {model_args.export_dir}.")
elif os.path.exists(os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME)):
shutil.copy(
os.path.join(vhead_path, V_HEAD_WEIGHTS_NAME),
os.path.join(model_args.export_dir, V_HEAD_WEIGHTS_NAME),
)
logger.info("Copied valuehead to {}.".format(model_args.export_dir))
logger.info(f"Copied valuehead to {model_args.export_dir}.")
try:
tokenizer.padding_side = "left" # restore padding side
@@ -140,4 +140,4 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
)
except Exception as e:
logger.warning("Cannot save tokenizer, please copy the files manually: {}.".format(e))
logger.warning(f"Cannot save tokenizer, please copy the files manually: {e}.")