support mllm hf inference
Former-commit-id: 2c7c01282acd7ddabbb17ce3246b8dae4bc4b8cf
This commit is contained in:
@@ -9,6 +9,7 @@ examples/
|
||||
│ ├── ppo.sh: Do PPO training using LoRA
|
||||
│ ├── dpo.sh: Do DPO training using LoRA
|
||||
│ ├── orpo.sh: Do ORPO training using LoRA
|
||||
│ ├── sft_mllm.sh: Do supervised fine-tuning on multimodal data using LoRA
|
||||
│ ├── prepare.sh: Save tokenized dataset
|
||||
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after LoRA tuning
|
||||
├── qlora_single_gpu/
|
||||
|
||||
@@ -9,6 +9,7 @@ examples/
|
||||
│ ├── ppo.sh: 基于 LoRA 进行 PPO 训练
|
||||
│ ├── dpo.sh: 基于 LoRA 进行 DPO 训练
|
||||
│ ├── orpo.sh: 基于 LoRA 进行 ORPO 训练
|
||||
│ ├── sft_mllm.sh: 基于 LoRA 进行多模态指令监督微调
|
||||
│ ├── prepare.sh: 保存预处理后的数据集
|
||||
│ └── predict.sh: 基于 LoRA 进行批量预测并计算 BLEU 和 ROUGE 分数
|
||||
├── qlora_single_gpu/
|
||||
|
||||
@@ -1,32 +1,33 @@
|
||||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft_mm \
|
||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
||||
--stage sft \
|
||||
--do_train \
|
||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
||||
--dataset mllm_instruct_example \
|
||||
--dataset_dir data \
|
||||
--template default \
|
||||
--visual_inputs \
|
||||
--dataset mllm_demo \
|
||||
--dataset_dir ../../data \
|
||||
--template vicuna \
|
||||
--finetuning_type lora \
|
||||
--lora_target all \
|
||||
--output_dir saves/llava-1.5-7b/lora/sft \
|
||||
--lora_target q_proj,v_proj \
|
||||
--output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 3 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--logging_steps 10 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 100 \
|
||||
--num_train_epochs 100.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--bf16
|
||||
--fp16
|
||||
Reference in New Issue
Block a user