[breaking] support transformers 4.48 (#6628)
Former-commit-id: f154ab175c513a4d7bb866bf2cffc34b77b50508
This commit is contained in:
@@ -34,7 +34,7 @@ from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers import PreTrainedTokenizer, ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
@@ -88,24 +88,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
|
||||
return super()._get_train_sampler()
|
||||
|
||||
@override
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
|
||||
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
|
||||
r"""
|
||||
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
|
||||
|
||||
It should be removed after https://github.com/huggingface/transformers/pull/35651 is merged.
|
||||
"""
|
||||
loss = super().compute_loss(model, inputs, return_outputs, **kwargs)
|
||||
if kwargs.get("num_items_in_batch") and not getattr(self, "model_accepts_loss_kwargs", False):
|
||||
if return_outputs:
|
||||
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
|
||||
else:
|
||||
loss = loss / self.args.gradient_accumulation_steps
|
||||
|
||||
return loss
|
||||
|
||||
@override
|
||||
def prediction_step(
|
||||
self,
|
||||
|
||||
Reference in New Issue
Block a user