[breaking] support transformers 4.48 (#6628)
Former-commit-id: f154ab175c513a4d7bb866bf2cffc34b77b50508
This commit is contained in:
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
||||
from typing import TYPE_CHECKING, Optional
|
||||
|
||||
import torch
|
||||
from transformers import Trainer
|
||||
@@ -25,7 +25,7 @@ from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
from transformers import ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
@@ -72,21 +72,3 @@ class CustomTrainer(Trainer):
|
||||
return torch.utils.data.SequentialSampler(self.train_dataset)
|
||||
|
||||
return super()._get_train_sampler()
|
||||
|
||||
@override
|
||||
def compute_loss(
|
||||
self, model: "PreTrainedModel", inputs: Dict[str, "torch.Tensor"], return_outputs: bool = False, **kwargs
|
||||
) -> Union["torch.Tensor", Tuple["torch.Tensor", List["torch.Tensor"]]]:
|
||||
r"""
|
||||
Fixes the loss value. See https://github.com/huggingface/transformers/pull/35438 for details.
|
||||
|
||||
It should be removed after https://github.com/huggingface/transformers/pull/35651 is merged.
|
||||
"""
|
||||
loss = super().compute_loss(model, inputs, return_outputs, **kwargs)
|
||||
if kwargs.get("num_items_in_batch") and not getattr(self, "model_accepts_loss_kwargs", False):
|
||||
if return_outputs:
|
||||
loss = (loss[0] / self.args.gradient_accumulation_steps, *loss[1:])
|
||||
else:
|
||||
loss = loss / self.args.gradient_accumulation_steps
|
||||
|
||||
return loss
|
||||
|
||||
Reference in New Issue
Block a user