support LongLoRA
Former-commit-id: 0832ed37e7947d699f17375648a52f80752c2b6b
This commit is contained in:
@@ -1,301 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Modified from:
|
||||
# [1] https://huggingface.co/Birchlabs/flash_llama/blob/main/modeling_flash_llama.py
|
||||
# [2] https://github.com/lm-sys/FastChat/blob/main/fastchat/train/llama2_flash_attn_monkey_patch.py
|
||||
# [3] https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/modeling_flash_llama.py
|
||||
# [4] https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
||||
# With fix from Alex Birch: https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/discussions/17
|
||||
|
||||
import torch
|
||||
from typing import TYPE_CHECKING, Optional, Tuple
|
||||
from transformers.utils import logging
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
|
||||
try:
|
||||
from flash_attn.flash_attn_interface import (
|
||||
flash_attn_kvpacked_func,
|
||||
flash_attn_varlen_kvpacked_func
|
||||
)
|
||||
from flash_attn.bert_padding import pad_input, unpad_input
|
||||
print(">>>> FlashAttention installed")
|
||||
except ImportError:
|
||||
raise ImportError("Please install FlashAttention from https://github.com/Dao-AILab/flash-attention")
|
||||
|
||||
try:
|
||||
from flash_attn.layers.rotary import apply_rotary_emb_func
|
||||
print(">>>> Flash RoPE installed")
|
||||
except ImportError:
|
||||
raise ImportError("Please install RoPE kernels from https://github.com/Dao-AILab/flash-attention")
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class LlamaRMSNorm(torch.nn.Module):
|
||||
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return (self.weight * hidden_states).to(input_dtype) # for fp32 weight
|
||||
|
||||
|
||||
class FlashRotaryEmbedding(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
base=10000.0,
|
||||
interleaved=False,
|
||||
scale_base=None,
|
||||
scaling_factor=1.0,
|
||||
pos_idx_in_fp32=True,
|
||||
device=None
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.base = float(base)
|
||||
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
||||
# Generate and save the inverse frequency buffer (non trainable)
|
||||
inv_freq = self._compute_inv_freq(device)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.interleaved = interleaved
|
||||
self.scale_base = scale_base
|
||||
self.scaling_factor = scaling_factor
|
||||
scale = (
|
||||
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
||||
if scale_base is not None else None
|
||||
)
|
||||
self.register_buffer("scale", scale)
|
||||
|
||||
self._seq_len_cached = 0
|
||||
self._cos_cached = None
|
||||
self._sin_cached = None
|
||||
self._cos_k_cached = None
|
||||
self._sin_k_cached = None
|
||||
|
||||
def _compute_inv_freq(self, device=None):
|
||||
return 1 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
||||
|
||||
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
||||
if (
|
||||
seqlen > self._seq_len_cached or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
or (self.training and self._cos_cached.is_inference())
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
if self.pos_idx_in_fp32:
|
||||
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
||||
t /= self.scaling_factor
|
||||
if self.inv_freq.dtype != torch.float32:
|
||||
inv_freq = self.inv_freq.to(torch.float32)
|
||||
else:
|
||||
inv_freq = self.inv_freq
|
||||
else:
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
t /= self.scaling_factor
|
||||
inv_freq = self.inv_freq
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
if self.scale is None:
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
else:
|
||||
power = (
|
||||
(torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2) / self.scale_base
|
||||
)
|
||||
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
||||
# We want the multiplication by scale to happen in fp32
|
||||
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
||||
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
||||
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
||||
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
||||
|
||||
def forward(self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
r"""
|
||||
q: (batch, seqlen, nheads, headdim)
|
||||
k: (batch, seqlen, nheads, headdim)
|
||||
seqlen_offset: can be used in generation where the qkv being passed in is only the last
|
||||
token in the batch.
|
||||
"""
|
||||
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
|
||||
if self.scale is None:
|
||||
return apply_rotary_emb_func(
|
||||
q, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
||||
self.interleaved, True # inplace=True
|
||||
), apply_rotary_emb_func(
|
||||
k, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
||||
self.interleaved, True # inplace=True
|
||||
)
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
r"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, slen, _, num_key_value_heads, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, :, :, None, :].expand(batch, slen, 2, num_key_value_heads, n_rep, head_dim)
|
||||
return hidden_states.reshape(batch, slen, 2, num_key_value_heads * n_rep, head_dim)
|
||||
|
||||
|
||||
class LlamaAttention(torch.nn.Module):
|
||||
|
||||
def __init__(self, config: "LlamaConfig"):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.num_key_value_heads = config.num_key_value_heads
|
||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
|
||||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {self.num_heads})."
|
||||
)
|
||||
|
||||
self.q_proj = torch.nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
||||
self.k_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.v_proj = torch.nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||||
|
||||
self.register_buffer(
|
||||
"norm_factor",
|
||||
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
if self.config.rope_scaling is None:
|
||||
scaling_factor = 1
|
||||
else:
|
||||
scaling_type = self.config.rope_scaling["type"]
|
||||
scaling_factor = self.config.rope_scaling["factor"]
|
||||
assert scaling_type == "linear"
|
||||
|
||||
self.rotary_emb = FlashRotaryEmbedding(
|
||||
self.head_dim, base=10000, interleaved=False, scaling_factor=scaling_factor
|
||||
)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, h_size = hidden_states.size()
|
||||
|
||||
has_layer_past = past_key_value is not None
|
||||
|
||||
if has_layer_past:
|
||||
past_kv = past_key_value[0]
|
||||
past_len = past_key_value[1]
|
||||
else:
|
||||
past_len = 0
|
||||
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
|
||||
q = q.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
k = k.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
v = v.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
q, k = self.rotary_emb(q, k, past_len)
|
||||
|
||||
kv = torch.stack([k, v], 2)
|
||||
kv = repeat_kv(kv, self.num_key_value_groups)
|
||||
|
||||
# Cache QKV values
|
||||
if has_layer_past:
|
||||
new_len = past_len+q.size(1)
|
||||
if new_len > past_kv.size(1):
|
||||
past_kv = torch.cat(
|
||||
[past_kv, torch.empty(bsz, 256, 2, kv.size(3), kv.size(4), dtype=kv.dtype, device=kv.device)],
|
||||
dim=1
|
||||
)
|
||||
past_kv[:, past_len:new_len] = kv
|
||||
kv = past_kv[:, :new_len]
|
||||
else:
|
||||
past_kv = kv
|
||||
|
||||
past_key_value = (past_kv, past_len + q.size(1)) if use_cache else None
|
||||
|
||||
if attention_mask is not None:
|
||||
# varlen, ignore padding tokens, efficient for large batch with many paddings
|
||||
logger.warning_once("padded sequences is less efficient")
|
||||
|
||||
unpadded_kv, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(kv, attention_mask)
|
||||
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask[:, -q.size(1):])
|
||||
attn_outputs = flash_attn_varlen_kvpacked_func(
|
||||
unpadded_q, unpadded_kv, cu_seqlens_q, cu_seqlens_k,
|
||||
max_seqlen_q, max_seqlen_k,
|
||||
dropout_p=0.0, softmax_scale=1.0 / self.norm_factor,
|
||||
causal=(not has_layer_past), return_attn_probs=output_attentions
|
||||
)
|
||||
|
||||
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
||||
attn_output = pad_input(attn_output, indices_q, bsz, q_len).reshape(bsz, q_len, h_size)
|
||||
attn_weights = attn_outputs[2] if output_attentions else None
|
||||
|
||||
else:
|
||||
# no padding tokens, more efficient
|
||||
attn_outputs = flash_attn_kvpacked_func(
|
||||
q, kv, dropout_p=0.0, softmax_scale=1.0 / self.norm_factor,
|
||||
causal=(not has_layer_past), return_attn_probs=output_attentions
|
||||
)
|
||||
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
||||
attn_output = attn_output.reshape(bsz, q_len, h_size)
|
||||
attn_weights = attn_outputs[2] if output_attentions else None
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
# Disable the transformation of the attention mask in LlamaModel as flash attention
|
||||
# takes a boolean key_padding_mask. Fills in the past kv length for use in forward.
|
||||
def _prepare_decoder_attention_mask(
|
||||
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||||
):
|
||||
# [bsz, seq_len]
|
||||
if past_key_values_length > 0 and attention_mask is not None:
|
||||
attention_mask = torch.cat(
|
||||
(
|
||||
torch.full(
|
||||
(input_shape[0], past_key_values_length),
|
||||
True,
|
||||
dtype=attention_mask.dtype,
|
||||
device=attention_mask.device
|
||||
),
|
||||
attention_mask
|
||||
),
|
||||
dim=-1
|
||||
)
|
||||
|
||||
if attention_mask is not None and torch.all(attention_mask):
|
||||
return None # This uses the faster call when training with full samples
|
||||
|
||||
return attention_mask
|
||||
232
src/llmtuner/extras/patches/llama_patch.py
Normal file
232
src/llmtuner/extras/patches/llama_patch.py
Normal file
@@ -0,0 +1,232 @@
|
||||
# coding=utf-8
|
||||
# Modified from:
|
||||
# [1] https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
||||
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional, Tuple
|
||||
from transformers.utils import logging
|
||||
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
|
||||
|
||||
try:
|
||||
from flash_attn import flash_attn_func, flash_attn_varlen_func # type: ignore
|
||||
from flash_attn.bert_padding import pad_input, unpad_input # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError("Please install FlashAttention from https://github.com/Dao-AILab/flash-attention")
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
return (self.weight * hidden_states).to(input_dtype)
|
||||
|
||||
|
||||
class LlamaShiftShortAttention(LlamaAttention):
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None: # reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
if getattr(self, "num_key_value_groups"):
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
if getattr(self, "shift_ratio", None) and self.training: # shift
|
||||
group_size = int(q_len * getattr(self, "shift_ratio"))
|
||||
if q_len % group_size > 0:
|
||||
raise ValueError("q_len {} should be divisible by group size {}.".format(q_len, group_size))
|
||||
num_group = q_len // group_size
|
||||
for state in (query_states, key_states, value_states):
|
||||
state = state.transpose(1, 2) # output: (bsz, seq_len, n_heads, head_dim)
|
||||
state[:, :, self.num_heads//2:] = state[:, :, self.num_heads//2:].roll(-group_size//2, dims=1)
|
||||
state = state.reshape(bsz * num_group, group_size, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||
f" {attn_weights.size()}"
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
raise ValueError(
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
||||
)
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
if getattr(self, "shift_ratio", None) and self.training: # shift back
|
||||
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output[:, :, self.num_heads//2:] = attn_output[:, :, self.num_heads//2:].roll(group_size//2, dims=1)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
class LlamaFlashAttention2(LlamaAttention):
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
# LlamaFlashAttention2 attention does not support output_attentions
|
||||
output_attentions = False
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
# FlashAttention requires the input to have the shape (bsz, seq_len, n_heads, head_dim)
|
||||
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
kv_seq_len += past_key_value[0].shape[-2]
|
||||
|
||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
||||
|
||||
if past_key_value is not None: # reuse k, v, self_attention
|
||||
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||||
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||||
|
||||
past_key_value = (key_states, value_states) if use_cache else None
|
||||
|
||||
if getattr(self, "num_key_value_groups"):
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
query_states = query_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
|
||||
key_states = key_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
|
||||
value_states = value_states.transpose(1, 2) # (bsz, seq_len, n_heads, head_dim)
|
||||
|
||||
if getattr(self, "shift_ratio", None) and self.training: # shift
|
||||
group_size = int(q_len * getattr(self, "shift_ratio"))
|
||||
if q_len % group_size > 0:
|
||||
raise ValueError("q_len {} should be divisible by group size {}.".format(q_len, group_size))
|
||||
num_group = q_len // group_size
|
||||
for state in (query_states, key_states, value_states):
|
||||
state[:, :, self.num_heads//2:] = state[:, :, self.num_heads//2:].roll(-group_size//2, dims=1)
|
||||
state = state.reshape(bsz * num_group, group_size, self.num_heads, self.head_dim)
|
||||
|
||||
if attention_mask is not None:
|
||||
logger.warning_once("Padded sequences are less efficient.")
|
||||
batch_size = query_states.shape[0]
|
||||
# -q_len: assumes left padding
|
||||
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query_states, attention_mask[:, -q_len:])
|
||||
unpadded_k, _, cu_seqlens_k, max_seqlen_k = unpad_input(key_states, attention_mask)
|
||||
unpadded_v, _, _, _ = unpad_input(value_states, attention_mask)
|
||||
attn_output_unpad = flash_attn_varlen_func(
|
||||
unpadded_q,
|
||||
unpadded_k,
|
||||
unpadded_v,
|
||||
cu_seqlens_q=cu_seqlens_q,
|
||||
cu_seqlens_k=cu_seqlens_k,
|
||||
max_seqlen_q=max_seqlen_q,
|
||||
max_seqlen_k=max_seqlen_k,
|
||||
dropout_p=0.0,
|
||||
softmax_scale=None,
|
||||
causal=True,
|
||||
)
|
||||
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, q_len)
|
||||
else:
|
||||
attn_output = flash_attn_func(
|
||||
query_states, key_states, value_states, 0.0, softmax_scale=None, causal=True
|
||||
)
|
||||
|
||||
if getattr(self, "shift_ratio", None) and self.training: # shift back
|
||||
attn_output.reshape(bsz, q_len, self.num_heads, self.head_dim)
|
||||
attn_output[:, :, self.num_heads//2:] = attn_output[:, :, self.num_heads//2:].roll(group_size//2, dims=1)
|
||||
|
||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
# Disable the transformation of the attention mask in LlamaModel as flash attention
|
||||
# takes a boolean padding_mask. Fills in the past kv length for use in forward.
|
||||
def _prepare_decoder_attention_mask(
|
||||
self,
|
||||
attention_mask: torch.Tensor,
|
||||
input_shape: torch.Tensor,
|
||||
inputs_embeds: torch.Tensor,
|
||||
past_key_values_length: int
|
||||
) -> torch.Tensor:
|
||||
if attention_mask is not None and torch.all(attention_mask):
|
||||
return None # This uses the faster call when training with full samples
|
||||
|
||||
return attention_mask
|
||||
Reference in New Issue
Block a user