use fp16 model, add logcallback

Former-commit-id: bea275d51338b49ce855eec0178e759607265e3d
This commit is contained in:
hiyouga
2023-05-28 21:30:28 +08:00
parent 17024ebc1a
commit 1fc551e1be
7 changed files with 112 additions and 10 deletions

View File

@@ -4,15 +4,14 @@ import torch
from tqdm import tqdm
from typing import Callable, Dict, List, Literal, Optional, Tuple
from transformers import Seq2SeqTrainingArguments
from transformers.trainer import TrainerState
from transformers import Seq2SeqTrainingArguments, TrainerState
from transformers.modeling_utils import PreTrainedModel
from trl import PPOTrainer, AutoModelForCausalLMWithValueHead
from trl.core import LengthSampler
from trl.trainer.ppo_trainer import PPODecorators, logprobs_from_logits
from .peft_trainer import PeftTrainer
from .peft_trainer import PeftTrainer, LogCallback
from .config import FinetuningArguments
@@ -40,15 +39,41 @@ def replace_model(model: AutoModelForCausalLMWithValueHead, target: Literal["def
})
def cast_layernorm_dtype(
model: AutoModelForCausalLMWithValueHead,
layer_norm_names: List[str] = ["layernorm"], # for chatglm setting
layer_norm_params: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[AutoModelForCausalLMWithValueHead, Dict[str, torch.Tensor]]:
layer_norm_state_dict = {}
for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
if layer_norm_params is not None:
param.data = layer_norm_params[name] # restore float32 weights
else:
layer_norm_state_dict[name] = param.data.detach().clone() # store float32 weights for stability
param.data = param.data.to(torch.float16)
return model, layer_norm_state_dict
class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
r"""
Inherits PPOTrainer.
"""
def __init__(self, training_args: Seq2SeqTrainingArguments, finetuning_args: FinetuningArguments, **kwargs):
def __init__(
self,
training_args: Seq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: List[LogCallback],
**kwargs
):
PPOTrainer.__init__(self, **kwargs)
self.args = training_args
self.finetuning_args = finetuning_args
self.log_callback = callbacks[0]
self.state = TrainerState()
self.data_collator = self.accelerator.prepare(kwargs["data_collator"])
@@ -63,6 +88,11 @@ class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
num_train_epochs = self.args.num_train_epochs
max_steps = math.ceil(num_train_epochs * num_steps_per_epoch)
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
if self.is_world_process_zero():
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples}")
@@ -144,6 +174,7 @@ class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
print(logs)
logs["step"] = step
self.state.log_history.append(logs)
self.log_callback.on_log(self.args, self.state, None)
loss_meter.reset()
reward_meter.reset()
@@ -154,8 +185,8 @@ class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
def generate(
self,
inputs: Dict[str, torch.Tensor],
length_sampler: Callable = None,
return_prompt: bool = True,
length_sampler: Optional[Callable] = None,
return_prompt: Optional[bool] = True,
**generation_kwargs,
) -> torch.Tensor:
r"""
@@ -163,6 +194,8 @@ class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
Subclass and override to inject custom behavior.
"""
self.model, layer_norm_params = cast_layernorm_dtype(self.model)
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
@@ -175,6 +208,8 @@ class PPOTrainerForLLaMA(PPOTrainer, PeftTrainer):
if unwrapped_model.pretrained_model.generation_config._from_model_config:
unwrapped_model.pretrained_model.generation_config._from_model_config = False
self.model, _ = cast_layernorm_dtype(self.model, layer_norm_params)
if not return_prompt and not self.is_encoder_decoder:
return response[:, inputs["input_ids"].size(1):]
return response