add vllm config
Former-commit-id: 95365f0ce4f362bde7de8b679b54b548d7055bfb
This commit is contained in:
@@ -15,10 +15,12 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
from dataclasses import dataclass, field, fields
|
||||
from typing import Any, Dict, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
from transformers.training_args import _convert_str_dict
|
||||
from typing_extensions import Self
|
||||
|
||||
|
||||
@@ -125,7 +127,7 @@ class VllmArguments:
|
||||
"""
|
||||
|
||||
vllm_maxlen: int = field(
|
||||
default=2048,
|
||||
default=4096,
|
||||
metadata={"help": "Maximum sequence (prompt + response) length of the vLLM engine."},
|
||||
)
|
||||
vllm_gpu_util: float = field(
|
||||
@@ -140,6 +142,10 @@ class VllmArguments:
|
||||
default=32,
|
||||
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
|
||||
)
|
||||
vllm_config: Optional[Union[dict, str]] = field(
|
||||
default=None,
|
||||
metadata={"help": "Config to initialize the vllm engine. Please use JSON strings."},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -312,6 +318,9 @@ class ModelArguments(QuantizationArguments, ProcessorArguments, ExportArguments,
|
||||
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
|
||||
raise ValueError("Quantization dataset is necessary for exporting.")
|
||||
|
||||
if isinstance(self.vllm_config, str) and self.vllm_config.startswith("{"):
|
||||
self.vllm_config = _convert_str_dict(json.loads(self.vllm_config))
|
||||
|
||||
@classmethod
|
||||
def copyfrom(cls, source: "Self", **kwargs) -> "Self":
|
||||
init_args, lazy_args = {}, {}
|
||||
|
||||
Reference in New Issue
Block a user