[feat] fp8 training (#8960)
Co-authored-by: Benjamin Feuer <penfever@gmail.com> Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
This commit is contained in:
171
src/llamafactory/train/fp8_utils.py
Normal file
171
src/llamafactory/train/fp8_utils.py
Normal file
@@ -0,0 +1,171 @@
|
||||
# Copyright 2025 the LlamaFactory team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Any, Optional
|
||||
|
||||
from ..extras import logging
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def create_fp8_kwargs(model_args: "ModelArguments") -> list[Any]:
|
||||
"""Create AORecipeKwargs for FP8 training with HuggingFace Accelerate.
|
||||
|
||||
Args:
|
||||
model_args: Model arguments containing FP8 configuration
|
||||
|
||||
Returns:
|
||||
List containing AORecipeKwargs if FP8 is enabled and supported, empty list otherwise
|
||||
"""
|
||||
if not model_args.fp8:
|
||||
return []
|
||||
|
||||
try:
|
||||
# Check if AORecipeKwargs is available (Accelerate 1.8.0+)
|
||||
from accelerate.utils import AORecipeKwargs
|
||||
|
||||
backend = getattr(model_args, "fp8_backend", "auto")
|
||||
logger.info_rank0(f"Creating FP8 configuration with backend: {backend}")
|
||||
|
||||
# Create Float8LinearConfig if torchao backend is used
|
||||
config = None
|
||||
if backend == "torchao" or backend == "auto":
|
||||
from torchao.float8 import Float8LinearConfig
|
||||
|
||||
# Use rowwise scaling for better performance (as recommended by torchao)
|
||||
# Configure alignment requirements for FP8 kernels
|
||||
config = Float8LinearConfig.from_recipe_name("rowwise")
|
||||
|
||||
# Enable alignment for better kernel performance
|
||||
if hasattr(config, "enable_amax_init"):
|
||||
config.enable_amax_init = True
|
||||
if hasattr(config, "enable_pre_and_post_forward"):
|
||||
config.enable_pre_and_post_forward = True
|
||||
|
||||
# Create module filter function to skip problematic layers
|
||||
# TorchAO FP8 requires dimensions divisible by 16 for optimal kernels
|
||||
def module_filter_func(module, layer_name):
|
||||
# Skip embedding and output layers for numerical stability
|
||||
skip_layers = ["embed", "lm_head", "output", "classifier"]
|
||||
if any(skip_name in layer_name.lower() for skip_name in skip_layers):
|
||||
return False
|
||||
|
||||
# Only convert Linear layers
|
||||
if not (hasattr(module, "weight") and len(module.weight.shape) == 2):
|
||||
return False
|
||||
|
||||
# Check dimension alignment for FP8 kernels
|
||||
weight = module.weight
|
||||
in_features, out_features = weight.shape[1], weight.shape[0]
|
||||
|
||||
# Skip layers with dimensions not divisible by 16 to avoid kernel errors
|
||||
if in_features % 16 != 0 or out_features % 16 != 0:
|
||||
logger.debug(
|
||||
f"Skipping layer {layer_name} with dimensions {out_features}x{in_features} (not divisible by 16)"
|
||||
)
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
# Map FSDP all-gather setting if available (this affects the underlying implementation)
|
||||
if hasattr(model_args, "fp8_enable_fsdp_float8_all_gather") and model_args.fp8_enable_fsdp_float8_all_gather:
|
||||
logger.info_rank0("FSDP float8 all-gather optimization requested")
|
||||
|
||||
return [AORecipeKwargs(config=config, module_filter_func=module_filter_func)]
|
||||
except Exception as e:
|
||||
logger.info_rank0(f"Failed to create FP8 configuration: {e}")
|
||||
return []
|
||||
|
||||
|
||||
def get_fp8_mixed_precision(model_args: "ModelArguments") -> Optional[str]:
|
||||
"""Get the mixed precision setting for Accelerate when using FP8.
|
||||
|
||||
Args:
|
||||
model_args: Model arguments containing FP8 configuration
|
||||
|
||||
Returns:
|
||||
"fp8" if FP8 is enabled, None otherwise
|
||||
"""
|
||||
return "fp8" if model_args.fp8 else None
|
||||
|
||||
|
||||
def configure_fp8_environment(model_args: "ModelArguments") -> None:
|
||||
"""Configure FP8 environment for HuggingFace Accelerate.
|
||||
|
||||
FP8 training is handled entirely through HuggingFace Accelerate, regardless of whether
|
||||
DeepSpeed or FSDP is used for distributed training. This function sets up the environment
|
||||
variables and validates the FP8 configuration.
|
||||
|
||||
Args:
|
||||
model_args: Model arguments containing FP8 configuration
|
||||
"""
|
||||
import os
|
||||
|
||||
if not model_args.fp8:
|
||||
return
|
||||
|
||||
# Set mixed precision to fp8 for HuggingFace Accelerate
|
||||
os.environ["ACCELERATE_MIXED_PRECISION"] = "fp8"
|
||||
logger.info_rank0("Set ACCELERATE_MIXED_PRECISION=fp8")
|
||||
|
||||
# Configure FP8 backend and options
|
||||
backend = getattr(model_args, "fp8_backend", "auto")
|
||||
if backend != "auto":
|
||||
os.environ["FP8_BACKEND"] = backend
|
||||
logger.info_rank0(f"Set FP8_BACKEND={backend}")
|
||||
|
||||
# Create and validate FP8 recipe kwargs (for logging/debugging)
|
||||
fp8_kwargs = create_fp8_kwargs(model_args)
|
||||
logger.info_rank0(f"FP8 AORecipeKwargs created: {len(fp8_kwargs)} items")
|
||||
|
||||
# Enable FSDP float8 all-gather optimization if requested
|
||||
if hasattr(model_args, "fp8_enable_fsdp_float8_all_gather") and model_args.fp8_enable_fsdp_float8_all_gather:
|
||||
os.environ["FP8_ENABLE_FSDP_FLOAT8_ALL_GATHER"] = "true"
|
||||
logger.info_rank0("Set FP8_ENABLE_FSDP_FLOAT8_ALL_GATHER=true")
|
||||
|
||||
logger.info_rank0("FP8 environment configured - all FP8 training handled by HuggingFace Accelerate")
|
||||
|
||||
|
||||
def verify_fp8_status(accelerator, model_args: "ModelArguments") -> None:
|
||||
"""Verify that FP8 training is actually working after model preparation.
|
||||
|
||||
Args:
|
||||
accelerator: The HuggingFace Accelerator instance
|
||||
model_args: Model arguments containing FP8 configuration
|
||||
"""
|
||||
if not model_args.fp8:
|
||||
return
|
||||
|
||||
# Check Accelerate's FP8 status
|
||||
fp8_enabled = getattr(accelerator, "fp8_enabled", False)
|
||||
fp8_backend_type = getattr(accelerator, "fp8_backend", "UNKNOWN")
|
||||
|
||||
backend = getattr(model_args, "fp8_backend", "auto")
|
||||
if backend == "torchao" or backend == "auto":
|
||||
logger.info_rank0(
|
||||
"FP8 training enabled with TorchAO backend. For optimal performance, "
|
||||
"ensure model layer dimensions are mostly divisible by 16. "
|
||||
"If you encounter issues, try fp8_backend='te' with Transformer Engine."
|
||||
)
|
||||
else:
|
||||
logger.info_rank0(f"FP8 training enabled with {backend} backend.")
|
||||
|
||||
logger.info_rank0(f"Accelerate FP8 status - enabled: {fp8_enabled}, backend: {fp8_backend_type}")
|
||||
|
||||
if not fp8_enabled:
|
||||
logger.info_rank0("WARNING: FP8 was requested but Accelerate shows fp8_enabled=False. FP8 may not be working.")
|
||||
Reference in New Issue
Block a user