[v1] support read dataset (#9243)
This commit is contained in:
@@ -13,7 +13,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
from ..config.training_args import TrainingArguments
|
||||
from ..extras.types import DataLoader, Model, Processor
|
||||
from ..extras.types import DataCollator, Model, Processor, TorchDataset
|
||||
|
||||
|
||||
class BaseTrainer:
|
||||
@@ -22,14 +22,19 @@ class BaseTrainer:
|
||||
args: TrainingArguments,
|
||||
model: Model,
|
||||
processor: Processor,
|
||||
data_loader: DataLoader,
|
||||
dataset: TorchDataset,
|
||||
data_collator: DataCollator,
|
||||
) -> None:
|
||||
self.args = args
|
||||
self.model = model
|
||||
self.processor = processor
|
||||
self.data_loader = data_loader
|
||||
self.dataset = dataset
|
||||
self.data_collator = data_collator
|
||||
self.optimizer = None
|
||||
self.lr_scheduler = None
|
||||
|
||||
def create_dataloader(self) -> None:
|
||||
pass
|
||||
|
||||
def fit(self) -> None:
|
||||
pass
|
||||
|
||||
@@ -13,63 +13,193 @@
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from collections.abc import AsyncIterator, Iterator
|
||||
from typing import Literal, Optional
|
||||
|
||||
from datasets import load_dataset
|
||||
from huggingface_hub import hf_hub_download
|
||||
from omegaconf import OmegaConf
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from ..config.data_args import DataArguments
|
||||
from ..extras.types import DataLoader, Dataset, Processor
|
||||
from ..extras.types import DatasetInfo, HFDataset, Processor
|
||||
|
||||
|
||||
class DataCollator:
|
||||
"""Default Data collator."""
|
||||
|
||||
def __init__(self, processor: Processor) -> None:
|
||||
self.processor = processor
|
||||
|
||||
|
||||
class DatasetPathMixin:
|
||||
"""Path utilities."""
|
||||
|
||||
args: DataArguments
|
||||
"""Data arguments."""
|
||||
|
||||
def _abspath(self, path: str) -> str:
|
||||
return os.path.abspath(os.path.expanduser(os.path.join(self.args.dataset_dir, path)))
|
||||
def _abspath(self, path: str, dataset_dir: Optional[str] = None) -> str:
|
||||
"""Get absolute path of dataset.
|
||||
|
||||
def _exists(self, path: str) -> bool:
|
||||
return os.path.exists(self._abspath(path))
|
||||
|
||||
def _isfile(self, path: str) -> bool:
|
||||
return os.path.isfile(self._abspath(path))
|
||||
|
||||
|
||||
class DataEngine(DatasetPathMixin):
|
||||
def __init__(self, data_args: DataArguments) -> None:
|
||||
self.args = data_args
|
||||
self.datasets: dict[str, Dataset] = {}
|
||||
dataset_info = self.get_dataset_info()
|
||||
self.load_dataset(dataset_info)
|
||||
|
||||
def get_dataset_info(self) -> dict:
|
||||
"""Get dataset info from dataset path.
|
||||
Args:
|
||||
path (str): Dataset path.
|
||||
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
|
||||
|
||||
Returns:
|
||||
dict: Dataset info.
|
||||
str: Absolute path of dataset.
|
||||
"""
|
||||
dataset_dir = dataset_dir or self.args.dataset_dir
|
||||
return os.path.abspath(os.path.expanduser(os.path.join(dataset_dir, path)))
|
||||
|
||||
def _exists(self, path: str, dataset_dir: Optional[str] = None) -> bool:
|
||||
"""Check if dataset exists.
|
||||
|
||||
Args:
|
||||
path (str): Dataset path.
|
||||
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
|
||||
|
||||
Returns:
|
||||
bool: Whether dataset exists.
|
||||
"""
|
||||
return os.path.exists(self._abspath(path, dataset_dir))
|
||||
|
||||
def _isfile(self, path: str, dataset_dir: Optional[str] = None) -> bool:
|
||||
"""Check if dataset is a file.
|
||||
|
||||
Args:
|
||||
path (str): Dataset path.
|
||||
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
|
||||
|
||||
Returns:
|
||||
bool: Whether dataset is a file.
|
||||
"""
|
||||
return os.path.isfile(self._abspath(path, dataset_dir))
|
||||
|
||||
def _isdir(self, path: str, dataset_dir: Optional[str] = None) -> bool:
|
||||
"""Check if dataset is a directory.
|
||||
|
||||
Args:
|
||||
path (str): Dataset path.
|
||||
dataset_dir (Optional[str], optional): Dataset directory. Defaults to None.
|
||||
|
||||
Returns:
|
||||
bool: Whether dataset is a directory.
|
||||
"""
|
||||
return os.path.isdir(self._abspath(path, dataset_dir))
|
||||
|
||||
def _get_builder_name(self, path: str) -> Literal["arrow", "csv", "json", "parquet", "text"]:
|
||||
"""Get dataset builder name.
|
||||
|
||||
Args:
|
||||
path (str): Dataset path.
|
||||
|
||||
Returns:
|
||||
Literal["arrow", "csv", "json", "parquet", "text"]: Dataset builder name.
|
||||
"""
|
||||
return os.path.splitext(path)[-1][1:].replace("jsonl", "json").replace("txt", "text")
|
||||
|
||||
|
||||
class DataEngine(Dataset, DatasetPathMixin):
|
||||
"""Data engine."""
|
||||
|
||||
def __init__(self, data_args: DataArguments) -> None:
|
||||
self.args = data_args
|
||||
"""Data arguments."""
|
||||
self.datasets: dict[str, HFDataset] = {}
|
||||
"""Dict of (dataset_name, dataset)"""
|
||||
self.dataset_info: dict[str, DatasetInfo] = {}
|
||||
"""Dict of (dataset_name, dataset_info)"""
|
||||
self.streaming: bool = False
|
||||
"""Whether dataset is streaming."""
|
||||
self.data_index: list[tuple[str, int]] = []
|
||||
"""List of (dataset_name, sample_index)"""
|
||||
self.get_dataset_info()
|
||||
self.load_dataset()
|
||||
self.build_data_index()
|
||||
|
||||
def get_dataset_info(self) -> None:
|
||||
"""Get dataset info."""
|
||||
if self.args.dataset.endswith(".yaml") and self._isfile(self.args.dataset): # local file
|
||||
return OmegaConf.load(self._abspath(self.args.dataset))
|
||||
elif self.args.dataset.endswith(".yaml"): # hf hub uri
|
||||
self.dataset_info = OmegaConf.load(self._abspath(self.args.dataset))
|
||||
elif self.args.dataset.endswith(".yaml"): # hf hub uri, e.g. llamafactory/v1-sft-demo/dataset_info.yaml
|
||||
repo_id, filename = os.path.split(self.args.dataset)
|
||||
filepath = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset")
|
||||
return OmegaConf.load(filepath)
|
||||
self.dataset_info = OmegaConf.load(filepath)
|
||||
elif self._exists(self.args.dataset): # local file(s)
|
||||
return {"default": {"file_name": self.args.dataset}}
|
||||
else: # hf hub dataset
|
||||
return {"default": {"hf_hub_url": self.args.dataset}}
|
||||
self.dataset_info = {"default": {"file_name": self.args.dataset}}
|
||||
else: # hf hub dataset, e.g. llamafactory/v1-sft-demo
|
||||
self.dataset_info = {"default": {"hf_hub_url": self.args.dataset}}
|
||||
|
||||
def load_dataset(self, dataset_info: dict) -> None:
|
||||
for key, value in dataset_info.items():
|
||||
def load_dataset(self) -> None:
|
||||
"""Load dataset from dataset info."""
|
||||
for key, value in self.dataset_info.items():
|
||||
dataset_dir = value.get("dataset_dir", self.args.dataset_dir)
|
||||
split = value.get("split", "train")
|
||||
streaming = value.get("streaming", False)
|
||||
self.streaming |= streaming
|
||||
if "hf_hub_url" in value:
|
||||
dataset_info[key] = load_dataset(value["hf_hub_url"])
|
||||
self.datasets[key] = load_dataset(value["hf_hub_url"], split=split, streaming=streaming)
|
||||
elif "file_name" in value:
|
||||
dataset_info[key] = load_dataset(value["file_name"])
|
||||
filepath = self._abspath(value["file_name"], dataset_dir)
|
||||
if os.path.isdir(filepath):
|
||||
filetype = self._get_builder_name(os.listdir(filepath)[0])
|
||||
self.datasets[key] = load_dataset(filetype, data_dir=filepath, split=split)
|
||||
elif os.path.isfile(filepath):
|
||||
filetype = self._get_builder_name(filepath)
|
||||
self.datasets[key] = load_dataset(filetype, data_files=filepath, split=split)
|
||||
else:
|
||||
raise ValueError(f"Can not load dataset {key} from {filepath}.")
|
||||
|
||||
def get_data_loader(self, processor: Processor) -> DataLoader:
|
||||
pass
|
||||
if streaming:
|
||||
self.datasets[key] = self.datasets[key].to_iterable_dataset()
|
||||
else:
|
||||
# TODO: support dataset loader plugins
|
||||
raise ValueError(f"Dataset {key} is not supported.")
|
||||
|
||||
def build_data_index(self) -> None:
|
||||
"""Build dataset index."""
|
||||
for dataset_name, dataset in self.datasets.items():
|
||||
if self.streaming:
|
||||
self.data_index.append((dataset_name, -1))
|
||||
else:
|
||||
# TODO: add sample_num, weight
|
||||
self.data_index.extend([(dataset_name, sample_index) for sample_index in range(len(dataset))])
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Get dataset length.
|
||||
|
||||
Returns:
|
||||
int: Dataset length.
|
||||
"""
|
||||
if self.streaming:
|
||||
return -1
|
||||
else:
|
||||
return len(self.data_index)
|
||||
|
||||
def __getitem__(self, index: int) -> dict:
|
||||
"""Get dataset item.
|
||||
|
||||
Args:
|
||||
index (int): Dataset index.
|
||||
|
||||
Returns:
|
||||
dict: Dataset item.
|
||||
"""
|
||||
dataset_name, sample_index = self.data_index[index]
|
||||
return self.datasets[dataset_name][sample_index]
|
||||
|
||||
def __iter__(self) -> Iterator:
|
||||
"""Get dataset iterator.
|
||||
|
||||
Returns:
|
||||
Iterator: Dataset iterator.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def __aiter__(self) -> AsyncIterator:
|
||||
"""Get dataset async iterator.
|
||||
|
||||
Returns:
|
||||
AsyncIterator: Dataset async iterator.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@@ -12,21 +12,47 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Union
|
||||
from typing import TYPE_CHECKING, NotRequired, TypedDict, Union
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset as HFDataset
|
||||
from datasets import IterableDataset
|
||||
from datasets import Dataset as HFArrowDataset
|
||||
from datasets import IterableDataset as HFIterableDataset
|
||||
from torch.utils.data import DataLoader as TorchDataLoader
|
||||
from torch.utils.data import Dataset as TorchArrowDataset
|
||||
from torch.utils.data import IterableDataset as TorchIterableDataset
|
||||
from transformers import DataCollator as HFDataCollator
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
|
||||
|
||||
Dataset = Union[HFDataset, IterableDataset]
|
||||
TorchDataset = Union[TorchArrowDataset, TorchIterableDataset]
|
||||
HFDataset = Union[HFArrowDataset, HFIterableDataset]
|
||||
DataCollator = HFDataCollator
|
||||
DataLoader = TorchDataLoader
|
||||
Model = PreTrainedModel
|
||||
Processor = Union[PreTrainedTokenizer, ProcessorMixin]
|
||||
else:
|
||||
Dataset = None
|
||||
TorchDataset = None
|
||||
HFDataset = None
|
||||
DataCollator = None
|
||||
DataLoader = None
|
||||
Model = None
|
||||
Processor = None
|
||||
|
||||
|
||||
class DatasetInfo(TypedDict, total=False):
|
||||
hf_hub_url: NotRequired[str]
|
||||
"""HF hub dataset uri."""
|
||||
file_name: NotRequired[str]
|
||||
"""Local file path."""
|
||||
dataset_dir: NotRequired[str]
|
||||
"""Dataset directory."""
|
||||
split: NotRequired[str]
|
||||
"""Dataset split."""
|
||||
converter: NotRequired[str]
|
||||
"""Dataset converter."""
|
||||
num_samples: NotRequired[int]
|
||||
"""Number of samples."""
|
||||
weight: NotRequired[float]
|
||||
"""Dataset weight."""
|
||||
streaming: NotRequired[bool]
|
||||
"""Is streaming dataset."""
|
||||
|
||||
Reference in New Issue
Block a user