video datasets

Former-commit-id: 33f28ce82d9e44d2615909250dc56d6a4a03cd99
This commit is contained in:
hiyouga
2024-09-05 02:04:17 +08:00
parent 2c1eef34cb
commit 1874d579c5
25 changed files with 359 additions and 148 deletions

View File

@@ -25,7 +25,7 @@ if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .mm_plugin import ImageInput
from .mm_plugin import ImageInput, VideoInput
from .parser import DatasetAttr
@@ -52,6 +52,26 @@ def _convert_images(
return images
def _convert_videos(
videos: Sequence["VideoInput"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
) -> Optional[List["VideoInput"]]:
r"""
Optionally concatenates video path to dataset dir when loading from local disk.
"""
if len(videos) == 0:
return None
videos = videos[:]
if dataset_attr.load_from in ["script", "file"]:
for i in range(len(videos)):
if isinstance(videos[i], str) and os.path.isfile(os.path.join(data_args.dataset_dir, videos[i])):
videos[i] = os.path.join(data_args.dataset_dir, videos[i])
return videos
def convert_alpaca(
example: Dict[str, Any],
dataset_attr: "DatasetAttr",
@@ -96,12 +116,14 @@ def convert_alpaca(
response = []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": example[dataset_attr.system] if dataset_attr.system else "",
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
}
return output
@@ -187,12 +209,14 @@ def convert_sharegpt(
prompt, response = [], []
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args)
convert_videos = partial(_convert_videos, dataset_attr=dataset_attr, data_args=data_args)
output = {
"_prompt": prompt,
"_response": response,
"_system": system,
"_tools": example[dataset_attr.tools] if dataset_attr.tools else "",
"_images": convert_images(example[dataset_attr.images]) if dataset_attr.images else None,
"_videos": convert_videos(example[dataset_attr.videos]) if dataset_attr.videos else None,
}
return output
@@ -210,6 +234,7 @@ def align_dataset(
_system: "..."
_tools: "...",
_images: [],
_videos: [],
"""
if dataset_attr.formatting == "alpaca":
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args)

View File

@@ -79,14 +79,19 @@ class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
processor: Optional["ProcessorMixin"] = None
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, "torch.Tensor"]:
batch_images, batch_imglens, batch_seqlens = [], [], []
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens = [], [], [], [], []
for feature in features:
images = feature.pop("images") or [] # avoid NoneType
videos = feature.pop("videos") or []
batch_images.extend(images)
batch_videos.extend(videos)
batch_imglens.append(len(images))
batch_vidlens.append(len(videos))
batch_seqlens.append(len(feature["input_ids"]))
mm_inputs = self.template.mm_plugin.get_mm_inputs(batch_images, batch_imglens, batch_seqlens, self.processor)
mm_inputs = self.template.mm_plugin.get_mm_inputs(
batch_images, batch_videos, batch_imglens, batch_vidlens, batch_seqlens, self.processor
)
if "token_type_ids" in mm_inputs:
token_type_ids = mm_inputs.pop("token_type_ids")
for i, feature in enumerate(features):
@@ -136,6 +141,7 @@ class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
"attention_mask": feature["{}_attention_mask".format(key)],
"labels": feature["{}_labels".format(key)],
"images": feature["images"],
"videos": feature["videos"],
}
concatenated_features.append(target_feature)
@@ -158,12 +164,14 @@ class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
"attention_mask": feature["attention_mask"],
"labels": feature["labels"],
"images": feature["images"],
"videos": feature["videos"],
}
kl_feature = {
"input_ids": feature["kl_input_ids"],
"attention_mask": feature["kl_attention_mask"],
"labels": feature["kl_labels"],
"images": feature["images"],
"videos": feature["videos"],
}
target_features.append(target_feature)
kl_features.append(kl_feature)

View File

@@ -2,11 +2,10 @@ from copy import deepcopy
from io import BytesIO
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union
from PIL.Image import Image
from transformers import ProcessorMixin
import numpy as np
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER
from ..extras.packages import is_pillow_available
from ..extras.constants import IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER
from ..extras.packages import is_pillow_available, is_pyav_available
if is_pillow_available():
@@ -14,8 +13,13 @@ if is_pillow_available():
from PIL.Image import Image as ImageObject
if is_pyav_available():
import av
if TYPE_CHECKING:
import torch
from numpy.typing import NDArray
from transformers import PreTrainedTokenizer, ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
@@ -24,13 +28,14 @@ if TYPE_CHECKING:
bytes: Optional[bytes]
ImageInput = Union[str, EncodedImage, ImageObject]
VideoInput = str
def _regularize_images(images: Sequence["ImageInput"], processor: "ProcessorMixin") -> List["ImageObject"]:
r"""
Regularizes images to avoid error. Including reading, resizing and converting.
"""
image_resolution = getattr(processor, "image_resolution", 512)
image_resolution: int = getattr(processor, "image_resolution", 512)
results = []
for image in images:
if isinstance(image, str):
@@ -56,7 +61,37 @@ def _regularize_images(images: Sequence["ImageInput"], processor: "ProcessorMixi
return results
def _get_mm_inputs(images: Sequence["ImageInput"], processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
def _regularize_videos(videos: Sequence["VideoInput"], processor: "ProcessorMixin") -> List["NDArray"]:
r"""
Regularizes videos to avoid error. Including reading, resizing and converting.
"""
video_fps: float = getattr(processor, "video_fps", 1.0)
video_factor: int = getattr(processor, "video_factor", 1)
results = []
for video in videos:
container = av.open(video, "r")
video_stream = next(stream for stream in container.streams if stream.type == "video")
total_frames = video_stream.frames
sample_frames = float(video_stream.duration * video_stream.time_base) * video_fps
sample_frames = round(sample_frames / video_factor) * video_factor # for qwen2_vl
sample_indices = np.linspace(0, total_frames - 1, sample_frames).astype(np.int32)
frames: List["ImageObject"] = []
container.seek(0)
for frame_idx, frame in enumerate(container.decode(video_stream)):
if frame_idx in sample_indices:
frames.append(frame.to_image())
frames = _regularize_images(frames, processor)
results.append(frames)
return results
def _get_mm_inputs(
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: "ProcessorMixin",
) -> Dict[str, "torch.Tensor"]:
r"""
Processes visual inputs.
@@ -70,13 +105,19 @@ def _get_mm_inputs(images: Sequence["ImageInput"], processor: "ProcessorMixin")
It holds num_patches == torch.prod(image_grid_thw)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
input_dict = {"images": None, "videos": None}
if len(images) != 0:
images = _regularize_images(images, processor)
image_inputs = image_processor(images=images, return_tensors="pt")
else:
image_inputs = {}
input_dict["images"] = images
return image_inputs
if len(videos) != 0:
videos = _regularize_videos(videos, processor)
input_dict["videos"] = videos
if input_dict["images"] is not None or input_dict["videos"] is not None:
return image_processor(**input_dict, return_tensors="pt")
else:
return {}
def _get_paligemma_token_type_ids(
@@ -97,18 +138,32 @@ def _get_paligemma_token_type_ids(
class BasePlugin:
def __init__(self, image_token: str) -> None:
def __init__(self, image_token: Optional[str], video_token: Optional[str]) -> None:
self.image_token = image_token
self.video_token = video_token
def _validate_input(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
) -> None:
if len(images) != 0 and self.image_token is None:
raise ValueError("This model does not support image input.")
if len(videos) != 0 and self.video_token is None:
raise ValueError("This model does not support video input.")
def process_messages(
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
r"""
Pre-processes input messages before tokenization for VLMs.
"""
self._validate_input(images, videos)
return messages
def process_token_ids(
@@ -116,24 +171,29 @@ class BasePlugin:
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
r"""
Pre-processes token ids after tokenization for VLMs.
"""
self._validate_input(images, videos)
return input_ids, labels
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
r"""
Builds batched multimodal inputs for VLMs.
"""
self._validate_input(images, videos)
return {}
@@ -142,8 +202,10 @@ class LlavaPlugin(BasePlugin):
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
image_seqlen = getattr(processor, "image_seqlen")
messages = deepcopy(messages)
@@ -163,11 +225,14 @@ class LlavaPlugin(BasePlugin):
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
return _get_mm_inputs(images, processor)
self._validate_input(images, videos)
return _get_mm_inputs(images, videos, processor)
class PaliGemmaPlugin(BasePlugin):
@@ -175,8 +240,10 @@ class PaliGemmaPlugin(BasePlugin):
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
num_image_tokens = 0
messages = deepcopy(messages)
for message in messages:
@@ -197,9 +264,11 @@ class PaliGemmaPlugin(BasePlugin):
input_ids: List[int],
labels: Optional[List[int]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
) -> Tuple[List[int], Optional[List[int]]]:
self._validate_input(images, videos)
num_images = len(images)
image_seqlen = num_images * getattr(processor, "image_seqlen")
image_token_id = tokenizer.convert_tokens_to_ids(self.image_token)
@@ -212,11 +281,14 @@ class PaliGemmaPlugin(BasePlugin):
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
mm_inputs = _get_mm_inputs(images, processor)
self._validate_input(images, videos)
mm_inputs = _get_mm_inputs(images, videos, processor)
mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor)
return mm_inputs
@@ -226,16 +298,17 @@ class Qwen2vlPlugin(BasePlugin):
self,
messages: Sequence[Dict[str, str]],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
processor: Optional["ProcessorMixin"],
) -> List[Dict[str, str]]:
self._validate_input(images, videos)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
merge_length: int = getattr(image_processor, "merge_size") ** 2
if len(images) != 0:
image_grid_thw = _get_mm_inputs(images, processor)["image_grid_thw"]
else:
image_grid_thw = []
mm_inputs = _get_mm_inputs(images, videos, processor)
image_grid_thw = mm_inputs.get("image_grid_thw", [])
video_grid_thw = mm_inputs.get("video_grid_thw", [])
num_image_tokens = 0
num_image_tokens, num_video_tokens = 0, 0
messages = deepcopy(messages)
for message in messages:
content = message["content"]
@@ -252,21 +325,40 @@ class Qwen2vlPlugin(BasePlugin):
)
num_image_tokens += 1
while VIDEO_PLACEHOLDER in content:
if num_video_tokens >= len(video_grid_thw):
raise ValueError("`len(videos)` is less than the number of {} tokens.".format(VIDEO_PLACEHOLDER))
content = content.replace(
VIDEO_PLACEHOLDER,
"<|vision_start|>{}<|vision_end|>".format(
self.video_token * (video_grid_thw[num_video_tokens].prod() // merge_length)
),
1,
)
num_video_tokens += 1
message["content"] = content
if len(images) != num_image_tokens:
raise ValueError("The number of images does not match the number of {} tokens".format(IMAGE_PLACEHOLDER))
if len(videos) != num_video_tokens:
raise ValueError("The number of videos does not match the number of {} tokens".format(VIDEO_PLACEHOLDER))
return messages
def get_mm_inputs(
self,
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
imglens: Sequence[int],
vidlens: Sequence[int],
seqlens: Sequence[int],
processor: Optional["ProcessorMixin"],
) -> Dict[str, Union[List[int], "torch.Tensor"]]:
return _get_mm_inputs(images, processor)
self._validate_input(images, videos)
return _get_mm_inputs(images, videos, processor)
PLUGINS = {
@@ -277,9 +369,13 @@ PLUGINS = {
}
def get_mm_plugin(name: str, image_token: str) -> "BasePlugin":
def get_mm_plugin(
name: str,
image_token: Optional[str] = None,
video_token: Optional[str] = None,
) -> "BasePlugin":
plugin_class = PLUGINS.get(name, None)
if plugin_class is None:
raise ValueError("Multimodal plugin `{}` not found.".format(name))
return plugin_class(image_token)
return plugin_class(image_token, video_token)

View File

@@ -43,6 +43,7 @@ class DatasetAttr:
system: Optional[str] = None
tools: Optional[str] = None
images: Optional[str] = None
videos: Optional[str] = None
# rlhf columns
chosen: Optional[str] = None
rejected: Optional[str] = None
@@ -126,7 +127,7 @@ def get_dataset_list(dataset_names: Optional[Sequence[str]], dataset_dir: str) -
dataset_attr.set_attr("num_samples", dataset_info[name])
if "columns" in dataset_info[name]:
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]
column_names = ["system", "tools", "images", "videos", "chosen", "rejected", "kto_tag"]
if dataset_attr.formatting == "alpaca":
column_names.extend(["prompt", "query", "response", "history"])
else:

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput
from ..mm_plugin import ImageInput, VideoInput
from ..template import Template
@@ -38,6 +38,7 @@ def _encode_feedback_example(
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -55,8 +56,8 @@ def _encode_feedback_example(
else:
kl_messages = prompt + [kl_response[1]]
messages = template.mm_plugin.process_messages(messages, images, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
kl_messages = template.mm_plugin.process_messages(kl_messages, images, videos, processor)
prompt_ids, response_ids = template.encode_oneturn(tokenizer, messages, system, tools)
kl_prompt_ids, kl_response_ids = template.encode_oneturn(tokenizer, kl_messages, system, tools)
@@ -64,8 +65,8 @@ def _encode_feedback_example(
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, tokenizer, processor)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
kl_prompt_ids, _ = template.mm_plugin.process_token_ids(kl_prompt_ids, None, images, videos, tokenizer, processor)
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -103,6 +104,7 @@ def preprocess_feedback_dataset(
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -116,6 +118,7 @@ def preprocess_feedback_dataset(
model_inputs["kl_labels"].append(kl_labels)
model_inputs["kto_tags"].append(kto_tag)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag])
undesirable_num = len(model_inputs["kto_tags"]) - desirable_num

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput
from ..mm_plugin import ImageInput, VideoInput
from ..template import Template
@@ -37,13 +37,14 @@ def _encode_pairwise_example(
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
cutoff_len: int,
) -> Tuple[List[int], List[int], List[int], List[int]]:
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, processor)
chosen_messages = template.mm_plugin.process_messages(prompt + [response[0]], images, videos, processor)
rejected_messages = template.mm_plugin.process_messages(prompt + [response[1]], images, videos, processor)
prompt_ids, chosen_ids = template.encode_oneturn(tokenizer, chosen_messages, system, tools)
_, rejected_ids = template.encode_oneturn(tokenizer, rejected_messages, system, tools)
@@ -51,7 +52,7 @@ def _encode_pairwise_example(
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, tokenizer, processor)
prompt_ids, _ = template.mm_plugin.process_token_ids(prompt_ids, None, images, videos, tokenizer, processor)
# consider the response is more important
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
prompt_ids = prompt_ids[:source_len]
@@ -85,6 +86,7 @@ def preprocess_pairwise_dataset(
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -97,6 +99,7 @@ def preprocess_pairwise_dataset(
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
model_inputs["rejected_labels"].append(rejected_labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput
from ..mm_plugin import ImageInput, VideoInput
from ..template import Template
@@ -37,6 +37,7 @@ def _encode_supervised_example(
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -44,8 +45,8 @@ def _encode_supervised_example(
train_on_prompt: bool,
mask_history: bool,
) -> Tuple[List[int], List[int]]:
messages = template.mm_plugin.process_messages(prompt + response, images, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, tokenizer, processor)
messages = template.mm_plugin.process_messages(prompt + response, images, videos, processor)
input_ids, labels = template.mm_plugin.process_token_ids([], [], images, videos, tokenizer, processor)
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
total_length = len(input_ids) + (1 if template.efficient_eos else 0)
if mask_history:
@@ -107,6 +108,7 @@ def preprocess_supervised_dataset(
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -118,6 +120,7 @@ def preprocess_supervised_dataset(
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
return model_inputs
@@ -132,11 +135,8 @@ def preprocess_packed_supervised_dataset(
# TODO: use `position_ids` to achieve packing
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
if processor is not None:
raise NotImplementedError("`packing` have not been implemented for multimodal datasets.")
valid_num = 0
batch_input_ids, batch_labels = [], []
batch_input_ids, batch_labels, batch_images, batch_videos = [], [], [], []
lengths = []
length2indexes = defaultdict(list)
for i in range(len(examples["_prompt"])):
@@ -150,9 +150,10 @@ def preprocess_packed_supervised_dataset(
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=None,
processor=processor,
cutoff_len=data_args.cutoff_len - 1, # reserved for the padding token
train_on_prompt=data_args.train_on_prompt,
mask_history=data_args.mask_history,
@@ -165,16 +166,21 @@ def preprocess_packed_supervised_dataset(
length2indexes[length].append(valid_num)
batch_input_ids.append(input_ids)
batch_labels.append(labels)
batch_images.append(examples["_images"][i] or [])
batch_videos.append(examples["_videos"][i] or [])
valid_num += 1
model_inputs = defaultdict(list)
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token
for knapsack in knapsacks:
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
packed_images, packed_videos = [], []
for i, length in enumerate(knapsack):
index = length2indexes[length].pop()
packed_input_ids += batch_input_ids[index]
packed_labels += batch_labels[index]
packed_images += batch_images[index]
packed_videos += batch_videos[index]
if data_args.neat_packing:
packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1
else:
@@ -195,7 +201,8 @@ def preprocess_packed_supervised_dataset(
model_inputs["input_ids"].append(packed_input_ids)
model_inputs["attention_mask"].append(packed_attention_masks)
model_inputs["labels"].append(packed_labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["images"].append(packed_images or None)
model_inputs["videos"].append(packed_videos or None)
return model_inputs

View File

@@ -24,7 +24,7 @@ if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..mm_plugin import ImageInput
from ..mm_plugin import ImageInput, VideoInput
from ..template import Template
@@ -37,6 +37,7 @@ def _encode_unsupervised_example(
system: Optional[str],
tools: Optional[str],
images: Sequence["ImageInput"],
videos: Sequence["VideoInput"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
@@ -47,12 +48,12 @@ def _encode_unsupervised_example(
else:
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
messages = template.mm_plugin.process_messages(messages, images, processor)
messages = template.mm_plugin.process_messages(messages, images, videos, processor)
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, tokenizer, processor)
input_ids, _ = template.mm_plugin.process_token_ids(input_ids, None, images, videos, tokenizer, processor)
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
input_ids = input_ids[:source_len]
labels = labels[:target_len]
@@ -79,6 +80,7 @@ def preprocess_unsupervised_dataset(
system=examples["_system"][i],
tools=examples["_tools"][i],
images=examples["_images"][i] or [],
videos=examples["_videos"][i] or [],
template=template,
tokenizer=tokenizer,
processor=processor,
@@ -88,6 +90,7 @@ def preprocess_unsupervised_dataset(
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
model_inputs["images"].append(examples["_images"][i])
model_inputs["videos"].append(examples["_videos"][i])
return model_inputs

View File

@@ -17,7 +17,6 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
from transformers.utils.versions import require_version
from ..extras.constants import IMAGE_PLACEHOLDER
from ..extras.logging import get_logger
from .data_utils import Role
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
@@ -213,7 +212,7 @@ def _register_template(
stop_words: Sequence[str] = [],
efficient_eos: bool = False,
replace_eos: bool = False,
mm_plugin: "BasePlugin" = get_mm_plugin(name="base", image_token=IMAGE_PLACEHOLDER),
mm_plugin: "BasePlugin" = get_mm_plugin(name="base"),
) -> None:
r"""
Registers a chat template.
@@ -826,7 +825,7 @@ _register_template(
default_system="You are a helpful assistant.",
stop_words=["<|im_end|>"],
replace_eos=True,
mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>"),
mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
)