Initial commit

Former-commit-id: 5ca8e1d63727e7bcb8cab16542c763c47e48184a
This commit is contained in:
hiyouga
2023-05-28 18:09:04 +08:00
commit 17024ebc1a
29 changed files with 2399 additions and 0 deletions

72
src/train_rm.py Normal file
View File

@@ -0,0 +1,72 @@
# coding=utf-8
# Implements parameter-efficient training of a reward model based on LLaMA.
# This code is inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from utils import (
prepare_args,
prepare_data,
load_pretrained,
preprocess_data,
PairwiseDataCollatorForLLaMA,
PairwiseTrainerForLLaMA,
plot_loss
)
def main():
# prepare pretrained model and dataset
model_args, data_args, training_args, finetuning_args = prepare_args(stage="rm")
dataset = prepare_data(model_args, data_args)
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="rm")
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorForLLaMA(tokenizer, model.pretrained_model)
training_args.remove_unused_columns = False # Important for pairwise dataset
# Split the dataset
if training_args.do_train:
if data_args.dev_ratio > 1e-6:
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
else:
trainer_kwargs = {"train_dataset": dataset}
else: # do_eval or do_predict
trainer_kwargs = {"eval_dataset": dataset}
# Initialize our Trainer
trainer = PairwiseTrainerForLLaMA(
finetuning_args=finetuning_args,
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
**trainer_kwargs
)
# Training
if training_args.do_train:
train_result = trainer.train()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()