Initial commit
Former-commit-id: 5ca8e1d63727e7bcb8cab16542c763c47e48184a
This commit is contained in:
72
src/train_rm.py
Normal file
72
src/train_rm.py
Normal file
@@ -0,0 +1,72 @@
|
||||
# coding=utf-8
|
||||
# Implements parameter-efficient training of a reward model based on LLaMA.
|
||||
# This code is inspired by:
|
||||
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
|
||||
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
|
||||
|
||||
|
||||
from utils import (
|
||||
prepare_args,
|
||||
prepare_data,
|
||||
load_pretrained,
|
||||
preprocess_data,
|
||||
PairwiseDataCollatorForLLaMA,
|
||||
PairwiseTrainerForLLaMA,
|
||||
plot_loss
|
||||
)
|
||||
|
||||
def main():
|
||||
|
||||
# prepare pretrained model and dataset
|
||||
model_args, data_args, training_args, finetuning_args = prepare_args(stage="rm")
|
||||
dataset = prepare_data(model_args, data_args)
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="rm")
|
||||
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="rm")
|
||||
data_collator = PairwiseDataCollatorForLLaMA(tokenizer, model.pretrained_model)
|
||||
|
||||
training_args.remove_unused_columns = False # Important for pairwise dataset
|
||||
|
||||
# Split the dataset
|
||||
if training_args.do_train:
|
||||
if data_args.dev_ratio > 1e-6:
|
||||
dataset = dataset.train_test_split(test_size=data_args.dev_ratio)
|
||||
trainer_kwargs = {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
||||
else:
|
||||
trainer_kwargs = {"train_dataset": dataset}
|
||||
else: # do_eval or do_predict
|
||||
trainer_kwargs = {"eval_dataset": dataset}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = PairwiseTrainerForLLaMA(
|
||||
finetuning_args=finetuning_args,
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
**trainer_kwargs
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
trainer.save_model()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user