Initial commit
Former-commit-id: 5ca8e1d63727e7bcb8cab16542c763c47e48184a
This commit is contained in:
80
src/train_ppo.py
Normal file
80
src/train_ppo.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# coding=utf-8
|
||||
# Implements parameter-efficient PPO training of fine-tuned LLaMA.
|
||||
# This code is inspired by:
|
||||
# https://github.com/lvwerra/trl/blob/main/examples/sentiment/scripts/gpt-neox-20b_peft/gpt-neo-20b_sentiment_peft.py
|
||||
|
||||
import math
|
||||
|
||||
from torch.optim import AdamW
|
||||
|
||||
from transformers.optimization import get_scheduler
|
||||
from trl import PPOConfig
|
||||
|
||||
from utils import (
|
||||
prepare_args,
|
||||
prepare_data,
|
||||
load_pretrained,
|
||||
preprocess_data,
|
||||
DataCollatorForLLaMA,
|
||||
PPOTrainerForLLaMA,
|
||||
plot_loss
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
# prepare pretrained model and dataset
|
||||
model_args, data_args, training_args, finetuning_args = prepare_args(stage="ppo")
|
||||
dataset = prepare_data(model_args, data_args)
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="ppo")
|
||||
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="ppo")
|
||||
data_collator = DataCollatorForLLaMA(tokenizer, model.pretrained_model)
|
||||
|
||||
ppo_config = PPOConfig(
|
||||
model_name=model_args.model_name_or_path,
|
||||
learning_rate=training_args.learning_rate,
|
||||
mini_batch_size=training_args.per_device_train_batch_size,
|
||||
batch_size=training_args.per_device_train_batch_size,
|
||||
gradient_accumulation_steps=training_args.gradient_accumulation_steps,
|
||||
ppo_epochs=1,
|
||||
max_grad_norm=training_args.max_grad_norm
|
||||
)
|
||||
|
||||
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=ppo_config.learning_rate)
|
||||
total_train_batch_size = \
|
||||
training_args.per_device_train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
|
||||
lr_scheduler = get_scheduler(
|
||||
training_args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=training_args.warmup_steps,
|
||||
num_training_steps=(training_args.num_train_epochs * math.ceil(len(dataset) / total_train_batch_size))
|
||||
)
|
||||
|
||||
# Initialize our Trainer
|
||||
ppo_trainer = PPOTrainerForLLaMA(
|
||||
training_args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
ref_model=None,
|
||||
tokenizer=tokenizer,
|
||||
dataset=dataset,
|
||||
data_collator=data_collator,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler
|
||||
)
|
||||
|
||||
ppo_trainer.ppo_train(max_target_length=data_args.max_target_length)
|
||||
ppo_trainer.save_model()
|
||||
ppo_trainer.save_state() # must be after save_model
|
||||
if ppo_trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args, keys=["loss", "reward"])
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user