Initial commit

Former-commit-id: 5ca8e1d63727e7bcb8cab16542c763c47e48184a
This commit is contained in:
hiyouga
2023-05-28 18:09:04 +08:00
commit 17024ebc1a
29 changed files with 2399 additions and 0 deletions

53
data/README.md Normal file
View File

@@ -0,0 +1,53 @@
Data format in `dataset_info.json`:
```json
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the HuggingFace hub. (if specified, ignore below 3 arguments)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional)",
"columns": {
"prompt": "the name of the column in the datasets containing the prompts. (default: instruction)",
"query": "the name of the column in the datasets containing the queries. (default: input)",
"response": "the name of the column in the datasets containing the responses. (default: output)",
"history": "the name of the column in the datasets containing the history of chat. (default: None)"
}
}
```
`dataset_info.json` 中的数据集定义格式:
```json
"数据集名称": {
"hf_hub_url": "HuggingFace上的项目地址若指定则忽略下列三个参数",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值可选",
"columns": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",
"response": "数据集代表回答的表头名称默认output",
"history": "数据集代表历史对话的表头名称默认None"
}
}
```
部分预置数据集简介:
| 数据集名称 | 规模 | 描述 |
| --- | --- | --- |
| [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 52k | 斯坦福大学开源的 Alpaca 数据集,训练了 Alpaca 这类早期基于 LLaMA 的模型 |
| [Stanford Alpaca (Chinese)](https://github.com/ymcui/Chinese-LLaMA-Alpaca) | 51k | 使用 ChatGPT 翻译的 Alpaca 数据集 |
| [GPT-4 Generated Data](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) | 100k+ | 基于 GPT-4 的 self-instruction 数据集 |
| [BELLE 2M](https://huggingface.co/datasets/BelleGroup/train_2M_CN) | 2m | 包含约 200 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的中文指令数据 |
| [BELLE 1M](https://huggingface.co/datasets/BelleGroup/train_1M_CN) | 1m | 包含约 100 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的中文指令数据 |
| [BELLE 0.5M](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN) | 500k | 包含约 50 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的中文指令数据 |
| [BELLE Dialogue 0.4M](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M) | 400k | 包含约 40 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的个性化角色对话数据,包含角色介绍 |
| [BELLE School Math 0.25M](https://huggingface.co/datasets/BelleGroup/school_math_0.25M) | 250k | 包含约 25 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的中文数学题数据,包含解题过程 |
| [BELLE Multiturn Chat 0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) | 800k | 包含约 80 万条由 [BELLE](https://github.com/LianjiaTech/BELLE) 项目生成的用户与助手的多轮对话 |
| [Guanaco Dataset](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset) | 100k+ | 包含日文、简繁体中文、英文等多类数据,数据集原用于 Guanaco 模型训练 |
| [Firefly 1.1M](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M) | 1.1M | 中文对话大模型 firefly流萤的中文数据集包含多个 NLP 任务 |
| [CodeAlpaca 20k](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) | 20k | 英文代码生成任务数据集 |
| [Alpaca CoT](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT) | 6M | 用于微调的指令数据集集合 |
| [Web QA](https://huggingface.co/datasets/suolyer/webqa) | 36k | 百度知道汇集的中文问答数据集 |
| [UltraChat](https://github.com/thunlp/UltraChat) | 1.57M | 清华 NLP 发布的大规模多轮对话数据集 |
BELLE 数据集是由 ChatGPT 产生的数据集,不保证数据准确性,所有类 GPT 模型产生的 self-instruction 数据集均不能保证其准确性。

View File

@@ -0,0 +1 @@
3779ddbc040543ab1834ef216c983d6fcc06cc9a

View File

@@ -0,0 +1 @@
fc9a6a3458caca2af8dafc6181773fe10c6d8657

View File

@@ -0,0 +1 @@
25508714b7879a1e5a6764ba7f979a980f549f1a

View File

@@ -0,0 +1 @@
7cb6a7d11455bddc3d495750a2392683d775b184

View File

@@ -0,0 +1 @@
f437d58b7791609ee91f064551c5c5734a0fd97a

View File

@@ -0,0 +1 @@
0e346cf70e633456c7e83f68765361016005447a

View File

@@ -0,0 +1,46 @@
import json
import datasets
from typing import Any, Dict, List
_DESCRIPTION = "An example of dataset for LLaMA."
_CITATION = ""
_HOMEPAGE = ""
_LICENSE = ""
_URL = "examples.json"
class ExampleDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"instruction": datasets.Value("string"),
"input": datasets.Value("string"),
"output": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_path = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": file_path
}
)
]
def _generate_examples(self, filepath: str) -> Dict[int, Dict[str, Any]]:
example_dataset = json.load(open(filepath, "r", encoding="utf-8"))
for key, example in enumerate(example_dataset):
yield key, example

View File

@@ -0,0 +1,97 @@
import json
import datasets
from typing import Any, Dict, List
_DESCRIPTION = "Human preference data about helpfulness and harmlessness for ChatGLM."
_CITATION = ""
_HOMEPAGE = "https://huggingface.co/datasets/Anthropic/hh-rlhf"
_LICENSE = "mit"
_URL = "https://huggingface.co/datasets/Anthropic/hh-rlhf/resolve/main/"
_URLS = {
"train": [
_URL + "harmless-base/train.jsonl.gz",
_URL + "helpful-base/train.jsonl.gz",
_URL + "helpful-online/train.jsonl.gz",
_URL + "helpful-rejection-sampled/train.jsonl.gz"
],
"test": [
_URL + "harmless-base/test.jsonl.gz",
_URL + "helpful-base/test.jsonl.gz",
_URL + "helpful-online/test.jsonl.gz",
_URL + "helpful-rejection-sampled/test.jsonl.gz"
]
}
class HhRlhfEn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"instruction": datasets.Value("string"),
"output": datasets.Sequence(datasets.Value("string")),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": file_path["train"]
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": file_path["test"]
}
)
]
def _generate_examples(self, filepaths: List[str]) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat for ChatGLM
key = 0
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:
for row in f:
data = json.loads(row)
chosen = data["chosen"]
rejected = data["rejected"]
assist_idx = rejected.rfind("\n\nAssistant: ")
r_reject = rejected[assist_idx+13:].strip()
assist_idx = chosen.rfind("\n\nAssistant: ")
r_accept = chosen[assist_idx+13:].strip()
human_idx = chosen.rfind("\n\nHuman: ")
query = chosen[human_idx+9:assist_idx].strip()
prompt = chosen[:human_idx]
history = []
while prompt.rfind("\n\nAssistant: ") != -1:
assist_idx = prompt.rfind("\n\nAssistant: ")
human_idx = prompt.rfind("\n\nHuman: ")
if human_idx != -1:
old_query = prompt[human_idx+9:assist_idx].strip()
old_resp = prompt[assist_idx+13:].strip()
history.insert(0, (old_query, old_resp))
else:
break
prompt = prompt[:human_idx]
yield key, {
"instruction": query,
"output": [r_accept, r_reject],
"history": history
}
key += 1

View File

@@ -0,0 +1,76 @@
import json
import datasets
from typing import Any, Dict, List
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
_CITATION = """\
@misc{UltraChat,
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen},
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\url{https://github.com/thunlp/ultrachat}},
}
"""
_HOMEPAGE = "https://huggingface.co/datasets/stingning/ultrachat"
_LICENSE = "cc-by-nc-4.0"
_BASE_DATA_URL = "https://huggingface.co/datasets/stingning/ultrachat/resolve/main/train_{idx}.jsonl"
class BelleMultiturn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"instruction": datasets.Value("string"),
"output": datasets.Value("string"),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(9)] # multiple shards
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": file_paths
}
)
]
def _generate_examples(self, filepaths: List[str]) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat for ChatGLM
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:
for row in f:
try:
data = json.loads(row)
except:
continue
key = data["id"]
content = data["data"]
if len(content) % 2 == 1:
content.pop(-1)
if len(content) < 2:
continue
query = content[-2]
response = content[-1]
history = [[content[2*i], content[2*i+1]] for i in range(len(content) // 2 - 1)]
yield key, {
"instruction": query,
"output": response,
"history": history
}