[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
@@ -20,7 +20,7 @@ from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.train.test_utils import load_train_dataset
|
||||
from llamafactory.train.test_utils import load_dataset_module
|
||||
|
||||
|
||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||
@@ -36,7 +36,6 @@ TRAIN_ARGS = {
|
||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||
"template": "llama3",
|
||||
"cutoff_len": 8192,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
@@ -45,7 +44,7 @@ TRAIN_ARGS = {
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_feedback_data(num_samples: int):
|
||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
|
||||
@@ -21,7 +21,7 @@ from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.train.test_utils import load_train_dataset
|
||||
from llamafactory.train.test_utils import load_dataset_module
|
||||
|
||||
|
||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||
@@ -37,7 +37,6 @@ TRAIN_ARGS = {
|
||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||
"template": "llama3",
|
||||
"cutoff_len": 8192,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
@@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_pairwise_data(num_samples: int):
|
||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
|
||||
@@ -20,7 +20,7 @@ from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.extras.constants import IGNORE_INDEX
|
||||
from llamafactory.train.test_utils import load_train_dataset
|
||||
from llamafactory.train.test_utils import load_dataset_module
|
||||
|
||||
|
||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||
@@ -36,7 +36,6 @@ TRAIN_ARGS = {
|
||||
"finetuning_type": "full",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 8192,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
@@ -45,7 +44,7 @@ TRAIN_ARGS = {
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_supervised_single_turn(num_samples: int):
|
||||
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
|
||||
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(TINY_DATA, split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
@@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int):
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [8])
|
||||
def test_supervised_multi_turn(num_samples: int):
|
||||
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
|
||||
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
|
||||
"train_dataset"
|
||||
]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
@@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int):
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_train_on_prompt(num_samples: int):
|
||||
train_dataset = load_train_dataset(
|
||||
train_dataset = load_dataset_module(
|
||||
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
|
||||
)
|
||||
)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
@@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int):
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [4])
|
||||
def test_supervised_mask_history(num_samples: int):
|
||||
train_dataset = load_train_dataset(
|
||||
train_dataset = load_dataset_module(
|
||||
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
|
||||
)
|
||||
)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
|
||||
@@ -19,7 +19,7 @@ import pytest
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from llamafactory.train.test_utils import load_train_dataset
|
||||
from llamafactory.train.test_utils import load_dataset_module
|
||||
|
||||
|
||||
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
|
||||
@@ -39,7 +39,6 @@ TRAIN_ARGS = {
|
||||
"dataset_dir": "REMOTE:" + DEMO_DATA,
|
||||
"template": "llama3",
|
||||
"cutoff_len": 8192,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
@@ -48,7 +47,7 @@ TRAIN_ARGS = {
|
||||
|
||||
@pytest.mark.parametrize("num_samples", [16])
|
||||
def test_unsupervised_data(num_samples: int):
|
||||
train_dataset = load_train_dataset(**TRAIN_ARGS)
|
||||
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
|
||||
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
||||
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
||||
indexes = random.choices(range(len(original_data)), k=num_samples)
|
||||
|
||||
Reference in New Issue
Block a user