[data] fix loader (#7207)

* fix dataloader

* add test case

* fix type

* fix ci

* fix ci

* fix ci

* disable overwrite cache in ci

Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
hoshi-hiyouga
2025-03-07 17:20:46 +08:00
committed by GitHub
parent 82a2bac866
commit 16419b2834
16 changed files with 161 additions and 92 deletions

View File

@@ -20,7 +20,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
@@ -36,7 +36,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3",
"cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
@@ -45,7 +44,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16])
def test_feedback_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS)
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="kto_en_demo", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)

View File

@@ -21,7 +21,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
@@ -37,7 +37,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3",
"cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
@@ -55,7 +54,7 @@ def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str
@pytest.mark.parametrize("num_samples", [16])
def test_pairwise_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS)
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)

View File

@@ -20,7 +20,7 @@ from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.train.test_utils import load_train_dataset
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
@@ -36,7 +36,6 @@ TRAIN_ARGS = {
"finetuning_type": "full",
"template": "llama3",
"cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
@@ -45,7 +44,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16])
def test_supervised_single_turn(num_samples: int):
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
train_dataset = load_dataset_module(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(TINY_DATA, split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)
@@ -64,7 +63,9 @@ def test_supervised_single_turn(num_samples: int):
@pytest.mark.parametrize("num_samples", [8])
def test_supervised_multi_turn(num_samples: int):
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
train_dataset = load_dataset_module(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)[
"train_dataset"
]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)
@@ -75,9 +76,9 @@ def test_supervised_multi_turn(num_samples: int):
@pytest.mark.parametrize("num_samples", [4])
def test_supervised_train_on_prompt(num_samples: int):
train_dataset = load_train_dataset(
train_dataset = load_dataset_module(
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
)
)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)
@@ -89,9 +90,9 @@ def test_supervised_train_on_prompt(num_samples: int):
@pytest.mark.parametrize("num_samples", [4])
def test_supervised_mask_history(num_samples: int):
train_dataset = load_train_dataset(
train_dataset = load_dataset_module(
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
)
)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)

View File

@@ -19,7 +19,7 @@ import pytest
from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.train.test_utils import load_train_dataset
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
@@ -39,7 +39,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3",
"cutoff_len": 8192,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
@@ -48,7 +47,7 @@ TRAIN_ARGS = {
@pytest.mark.parametrize("num_samples", [16])
def test_unsupervised_data(num_samples: int):
train_dataset = load_train_dataset(**TRAIN_ARGS)
train_dataset = load_dataset_module(**TRAIN_ARGS)["train_dataset"]
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
indexes = random.choices(range(len(original_data)), k=num_samples)

View File

@@ -1,3 +1,17 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from llamafactory.data import Role
from llamafactory.data.converter import get_dataset_converter
from llamafactory.data.parser import DatasetAttr

56
tests/data/test_loader.py Normal file
View File

@@ -0,0 +1,56 @@
# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from llamafactory.train.test_utils import load_dataset_module
DEMO_DATA = os.getenv("DEMO_DATA", "llamafactory/demo_data")
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
TINY_DATA = os.getenv("TINY_DATA", "llamafactory/tiny-supervised-dataset")
TRAIN_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "full",
"template": "llama3",
"dataset": TINY_DATA,
"dataset_dir": "ONLINE",
"cutoff_len": 8192,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
def test_load_train_only():
dataset_module = load_dataset_module(**TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is None
def test_load_val_size():
dataset_module = load_dataset_module(val_size=0.1, **TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is not None
def test_load_eval_data():
dataset_module = load_dataset_module(eval_dataset=TINY_DATA, **TRAIN_ARGS)
assert dataset_module.get("train_dataset") is not None
assert dataset_module.get("eval_dataset") is not None

View File

@@ -32,7 +32,6 @@ TRAIN_ARGS = {
"dataset_dir": "REMOTE:" + DEMO_DATA,
"template": "llama3",
"cutoff_len": 1,
"overwrite_cache": False,
"overwrite_output_dir": True,
"per_device_train_batch_size": 1,
"max_steps": 1,

View File

@@ -33,7 +33,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,

View File

@@ -30,7 +30,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,

View File

@@ -30,7 +30,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,

View File

@@ -42,7 +42,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,

View File

@@ -34,7 +34,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,

View File

@@ -38,7 +38,6 @@ TRAIN_ARGS = {
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": False,
"overwrite_output_dir": True,
"per_device_train_batch_size": 1,
"max_steps": 1,