[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
@@ -43,7 +43,7 @@ class Role(str, Enum):
|
||||
|
||||
class DatasetModule(TypedDict):
|
||||
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]]
|
||||
|
||||
|
||||
def merge_dataset(
|
||||
@@ -54,11 +54,13 @@ def merge_dataset(
|
||||
"""
|
||||
if len(all_datasets) == 1:
|
||||
return all_datasets[0]
|
||||
|
||||
elif data_args.mix_strategy == "concat":
|
||||
if data_args.streaming:
|
||||
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
|
||||
|
||||
return concatenate_datasets(all_datasets)
|
||||
|
||||
elif data_args.mix_strategy.startswith("interleave"):
|
||||
if not data_args.streaming:
|
||||
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
@@ -69,24 +71,75 @@ def merge_dataset(
|
||||
seed=seed,
|
||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
|
||||
|
||||
|
||||
def split_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
|
||||
dataset: Optional[Union["Dataset", "IterableDataset"]],
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]],
|
||||
data_args: "DataArguments",
|
||||
seed: int,
|
||||
) -> "DatasetDict":
|
||||
r"""
|
||||
Splits the dataset and returns a dataset dict containing train set and validation set.
|
||||
|
||||
Supports both map dataset and iterable dataset.
|
||||
"""
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
return DatasetDict({"train": train_set, "validation": val_set})
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
|
||||
if eval_dataset is not None and data_args.val_size > 1e-6:
|
||||
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
|
||||
|
||||
dataset_dict = {}
|
||||
if dataset is not None:
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
if data_args.val_size > 1e-6:
|
||||
if data_args.streaming:
|
||||
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
|
||||
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
|
||||
else:
|
||||
dataset_dict["train"] = dataset
|
||||
|
||||
if eval_dataset is not None:
|
||||
if isinstance(eval_dataset, dict):
|
||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||
else:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
dataset_dict["validation"] = eval_dataset
|
||||
|
||||
return DatasetDict(dataset_dict)
|
||||
|
||||
|
||||
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
|
||||
r"""
|
||||
Converts dataset or dataset dict to dataset module.
|
||||
"""
|
||||
dataset_module: "DatasetModule" = {}
|
||||
if isinstance(dataset, DatasetDict): # dataset dict
|
||||
if "train" in dataset:
|
||||
dataset_module["train_dataset"] = dataset["train"]
|
||||
|
||||
if "validation" in dataset:
|
||||
dataset_module["eval_dataset"] = dataset["validation"]
|
||||
else:
|
||||
eval_dataset = {}
|
||||
for key in dataset.keys():
|
||||
if key.startswith("validation_"):
|
||||
eval_dataset[key[len("validation_") :]] = dataset[key]
|
||||
|
||||
if len(eval_dataset):
|
||||
dataset_module["eval_dataset"] = eval_dataset
|
||||
|
||||
else: # single dataset
|
||||
dataset_module["train_dataset"] = dataset
|
||||
|
||||
return dataset_module
|
||||
|
||||
Reference in New Issue
Block a user