[data] fix loader (#7207)
* fix dataloader * add test case * fix type * fix ci * fix ci * fix ci * disable overwrite cache in ci Former-commit-id: e84af0e140b1aafd1a6d6fe185a8e41c8fc5f831
This commit is contained in:
@@ -43,7 +43,7 @@ class Role(str, Enum):
|
||||
|
||||
class DatasetModule(TypedDict):
|
||||
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]]
|
||||
|
||||
|
||||
def merge_dataset(
|
||||
@@ -54,11 +54,13 @@ def merge_dataset(
|
||||
"""
|
||||
if len(all_datasets) == 1:
|
||||
return all_datasets[0]
|
||||
|
||||
elif data_args.mix_strategy == "concat":
|
||||
if data_args.streaming:
|
||||
logger.warning_rank0_once("The samples between different datasets will not be mixed in streaming mode.")
|
||||
|
||||
return concatenate_datasets(all_datasets)
|
||||
|
||||
elif data_args.mix_strategy.startswith("interleave"):
|
||||
if not data_args.streaming:
|
||||
logger.warning_rank0_once("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||
@@ -69,24 +71,75 @@ def merge_dataset(
|
||||
seed=seed,
|
||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown mixing strategy: {data_args.mix_strategy}.")
|
||||
|
||||
|
||||
def split_dataset(
|
||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
|
||||
dataset: Optional[Union["Dataset", "IterableDataset"]],
|
||||
eval_dataset: Optional[Union["Dataset", "IterableDataset", Dict[str, "Dataset"]]],
|
||||
data_args: "DataArguments",
|
||||
seed: int,
|
||||
) -> "DatasetDict":
|
||||
r"""
|
||||
Splits the dataset and returns a dataset dict containing train set and validation set.
|
||||
|
||||
Supports both map dataset and iterable dataset.
|
||||
"""
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
val_set = dataset.take(int(data_args.val_size))
|
||||
train_set = dataset.skip(int(data_args.val_size))
|
||||
return DatasetDict({"train": train_set, "validation": val_set})
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
|
||||
if eval_dataset is not None and data_args.val_size > 1e-6:
|
||||
raise ValueError("Cannot specify `val_size` if `eval_dataset` is not None.")
|
||||
|
||||
dataset_dict = {}
|
||||
if dataset is not None:
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
if data_args.val_size > 1e-6:
|
||||
if data_args.streaming:
|
||||
dataset_dict["validation"] = dataset.take(int(data_args.val_size))
|
||||
dataset_dict["train"] = dataset.skip(int(data_args.val_size))
|
||||
else:
|
||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||
dataset_dict = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||
dataset_dict = {"train": dataset["train"], "validation": dataset["test"]}
|
||||
else:
|
||||
dataset_dict["train"] = dataset
|
||||
|
||||
if eval_dataset is not None:
|
||||
if isinstance(eval_dataset, dict):
|
||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||
else:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||
|
||||
dataset_dict["validation"] = eval_dataset
|
||||
|
||||
return DatasetDict(dataset_dict)
|
||||
|
||||
|
||||
def get_dataset_module(dataset: Union["Dataset", "DatasetDict"]) -> "DatasetModule":
|
||||
r"""
|
||||
Converts dataset or dataset dict to dataset module.
|
||||
"""
|
||||
dataset_module: "DatasetModule" = {}
|
||||
if isinstance(dataset, DatasetDict): # dataset dict
|
||||
if "train" in dataset:
|
||||
dataset_module["train_dataset"] = dataset["train"]
|
||||
|
||||
if "validation" in dataset:
|
||||
dataset_module["eval_dataset"] = dataset["validation"]
|
||||
else:
|
||||
eval_dataset = {}
|
||||
for key in dataset.keys():
|
||||
if key.startswith("validation_"):
|
||||
eval_dataset[key[len("validation_") :]] = dataset[key]
|
||||
|
||||
if len(eval_dataset):
|
||||
dataset_module["eval_dataset"] = eval_dataset
|
||||
|
||||
else: # single dataset
|
||||
dataset_module["train_dataset"] = dataset
|
||||
|
||||
return dataset_module
|
||||
|
||||
@@ -17,13 +17,13 @@ import sys
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Sequence, Union
|
||||
|
||||
import numpy as np
|
||||
from datasets import DatasetDict, load_dataset, load_from_disk
|
||||
from datasets import load_dataset, load_from_disk
|
||||
|
||||
from ..extras import logging
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.misc import check_version, has_tokenized_data
|
||||
from .converter import align_dataset
|
||||
from .data_utils import merge_dataset, split_dataset
|
||||
from .data_utils import get_dataset_module, merge_dataset, split_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .processor import (
|
||||
FeedbackDatasetProcessor,
|
||||
@@ -292,23 +292,12 @@ def get_dataset(
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning_rank0("Loading dataset from disk will ignore other data arguments.")
|
||||
tokenized_data: Union["Dataset", "DatasetDict"] = load_from_disk(data_args.tokenized_path)
|
||||
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
||||
|
||||
dataset_module: Dict[str, "Dataset"] = {}
|
||||
if isinstance(tokenized_data, DatasetDict):
|
||||
if "train" in tokenized_data:
|
||||
dataset_module["train_dataset"] = tokenized_data["train"]
|
||||
|
||||
if "validation" in tokenized_data:
|
||||
dataset_module["eval_dataset"] = tokenized_data["validation"]
|
||||
|
||||
else: # single dataset
|
||||
dataset_module["train_dataset"] = tokenized_data
|
||||
|
||||
tokenized_data = load_from_disk(data_args.tokenized_path)
|
||||
dataset_module = get_dataset_module(tokenized_data)
|
||||
if data_args.streaming:
|
||||
dataset_module = {k: v.to_iterable_dataset() for k, v in dataset_module.items()}
|
||||
dataset_module["train_dataset"] = dataset_module["train_dataset"].to_iterable_dataset()
|
||||
|
||||
logger.info_rank0(f"Loaded tokenized dataset from {data_args.tokenized_path}.")
|
||||
return dataset_module
|
||||
|
||||
if data_args.streaming:
|
||||
@@ -335,27 +324,7 @@ def get_dataset(
|
||||
eval_dataset, data_args, training_args, stage, template, tokenizer, processor, is_eval=True
|
||||
)
|
||||
|
||||
if data_args.val_size > 1e-6:
|
||||
dataset_dict = split_dataset(dataset, data_args, seed=training_args.seed)
|
||||
else:
|
||||
dataset_dict = {}
|
||||
if dataset is not None:
|
||||
if data_args.streaming:
|
||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
|
||||
dataset_dict["train"] = dataset
|
||||
|
||||
if eval_dataset is not None:
|
||||
if isinstance(eval_dataset, dict):
|
||||
dataset_dict.update({f"validation_{name}": data for name, data in eval_dataset.items()})
|
||||
else:
|
||||
if data_args.streaming:
|
||||
eval_dataset = eval_dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
||||
|
||||
dataset_dict["validation"] = eval_dataset
|
||||
|
||||
dataset_dict = DatasetDict(dataset_dict)
|
||||
|
||||
dataset_dict = split_dataset(dataset, eval_dataset, data_args, seed=training_args.seed)
|
||||
if data_args.tokenized_path is not None: # save tokenized dataset to disk and exit
|
||||
if training_args.should_save:
|
||||
dataset_dict.save_to_disk(data_args.tokenized_path)
|
||||
@@ -364,19 +333,4 @@ def get_dataset(
|
||||
|
||||
sys.exit(0)
|
||||
|
||||
dataset_module = {}
|
||||
if "train" in dataset_dict:
|
||||
dataset_module["train_dataset"] = dataset_dict["train"]
|
||||
|
||||
if "validation" in dataset_dict:
|
||||
dataset_module["eval_dataset"] = dataset_dict["validation"]
|
||||
else:
|
||||
eval_dataset = {}
|
||||
for key in dataset_dict.keys():
|
||||
if key.startswith("validation_"):
|
||||
eval_dataset[key[len("validation_") :]] = dataset_dict[key]
|
||||
|
||||
if len(eval_dataset):
|
||||
dataset_module["eval_dataset"] = eval_dataset
|
||||
|
||||
return dataset_module
|
||||
return get_dataset_module(dataset_dict)
|
||||
|
||||
@@ -26,10 +26,11 @@ from ..model import load_model, load_tokenizer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
from peft import LoraModel
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ..data.data_utils import DatasetModule
|
||||
|
||||
|
||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []) -> None:
|
||||
state_dict_a = model_a.state_dict()
|
||||
@@ -101,12 +102,12 @@ def load_reference_model(
|
||||
return model
|
||||
|
||||
|
||||
def load_train_dataset(**kwargs) -> "Dataset":
|
||||
def load_dataset_module(**kwargs) -> "DatasetModule":
|
||||
model_args, data_args, training_args, _, _ = get_train_args(kwargs)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
|
||||
dataset_module = get_dataset(template, model_args, data_args, training_args, kwargs["stage"], **tokenizer_module)
|
||||
return dataset_module["train_dataset"]
|
||||
return dataset_module
|
||||
|
||||
|
||||
def patch_valuehead_model() -> None:
|
||||
|
||||
Reference in New Issue
Block a user