add llava and instructblip

Former-commit-id: 142fb6f4541a1acfefe66ff2574dabde53b00c06
This commit is contained in:
BUAADreamer
2024-04-25 00:22:43 +08:00
parent 1451297c78
commit 12c51655ce
16 changed files with 273 additions and 214 deletions

View File

@@ -199,8 +199,7 @@ def get_mm_dataset(
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args):
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
all_datasets.append(load_dataset("json", data_files=local_path)['train'])
all_datasets.append(load_dataset(dataset_attr.dataset_name)['train'])
dataset = merge_dataset(all_datasets, data_args, training_args)
return dataset

View File

@@ -275,4 +275,4 @@ def get_preprocess_and_print_func(
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
return preprocess_func, print_function
return preprocess_func, print_function

View File

@@ -88,10 +88,6 @@ class DataArguments:
default=None,
metadata={"help": "Path to save or load the tokenized datasets."},
)
image_path: Optional[str] = field(
default=None,
metadata={"help": "Path to images."},
)
def __post_init__(self):
if self.reserved_label_len >= self.cutoff_len:

View File

@@ -165,10 +165,6 @@ class ModelArguments:
default=False,
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
)
use_qformer: bool = field(
default=False,
metadata={"help": "Whether use qformer for Multimodal LLM."},
)
def __post_init__(self):
self.compute_dtype = None

View File

@@ -182,7 +182,8 @@ def init_adapter(
def init_mm_adapter(
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool
is_trainable: bool,
use_clm=True,
) -> "AutoModelForVision2Seq":
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
@@ -253,12 +254,19 @@ def init_mm_adapter(
}
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
else:
lora_config = LoraConfig(
# task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
if use_clm:
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
else:
lora_config = LoraConfig(
inference_mode=False,
use_dora=finetuning_args.use_dora,
**peft_kwargs,
)
model = get_peft_model(model, lora_config)
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):

View File

@@ -191,6 +191,7 @@ def load_mm_model(
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
use_clm=True,
) -> "AutoModelForVision2Seq":
r"""
Loads pretrained model. Must after load_tokenizer.
@@ -231,7 +232,7 @@ def load_mm_model(
patch_model(model, tokenizer, model_args, is_trainable)
register_autoclass(config, model, tokenizer)
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable)
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
if not is_trainable:
model.requires_grad_(False)

View File

@@ -1,69 +1,29 @@
import json
import os
from dataclasses import dataclass
import torch
from torch.utils.data import Dataset as Dataset_torch
from datasets import Dataset
from PIL import Image
from transformers import AutoProcessor
class ImageCaptioningDataset(Dataset_torch):
def __init__(self, dataset: Dataset, image_path: str, processor: AutoProcessor):
self.processor = processor
self.dataset = dataset
self.image_path = image_path
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
source = self.dataset[idx]
image_id = source['image']
image = Image.open(os.path.join(self.image_path, image_id))
convs = source['conversations']
prompt = convs[0]['value']
label = convs[1]['value']
image_inputs = self.processor(image, return_tensors="pt")
image_inputs = {k: v.squeeze() for k, v in image_inputs.items()}
inputs = {
"input_ids": prompt,
"labels": label,
}
for key in image_inputs:
inputs[key] = image_inputs[key]
return inputs
@dataclass
class DataCollatorForVis2Seq:
processor: AutoProcessor
use_qformer: bool = False
def __call__(self, features, return_tensors=None):
processed_batch = {}
for key in features[0].keys():
if key == 'pixel_values':
processed_batch[key] = torch.stack([example[key] for example in features])
elif key == 'input_ids':
text_inputs = self.processor.tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["input_ids"] = text_inputs["input_ids"]
processed_batch["attention_mask"] = text_inputs["attention_mask"]
if self.use_qformer:
qformer_text_inputs = self.processor.qformer_tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["qformer_input_ids"] = qformer_text_inputs["input_ids"]
processed_batch["qformer_attention_mask"] = qformer_text_inputs["attention_mask"]
elif key == 'labels':
text_inputs = self.processor.tokenizer(
[example[key] for example in features], padding="max_length", return_tensors="pt",
max_length=512,
)
processed_batch["labels"] = text_inputs["input_ids"]
return processed_batch
def __call__(self, examples):
texts = []
images = []
for example in examples:
if len(example["images"]) > 1:
raise ValueError("This collator only supports one image per example")
messages = example["messages"]
text = self.processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=False
)
texts.append(text)
images.append(example["images"][0])
batch = self.processor(text=texts, images=images, return_tensors="pt", padding=True)
labels = batch["input_ids"].clone()
if self.processor.tokenizer.pad_token_id is not None:
labels[labels == self.processor.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch

View File

@@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import Seq2SeqTrainer
from transformers import Seq2SeqTrainer, Trainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
@@ -32,23 +32,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
# def compute_loss(self, model, inputs, return_outputs=False):
# print(inputs.keys())
# device = "cuda"
# input_ids = inputs.get("input_ids").to(device)
# pixel_values = inputs.get("pixel_values").to(device, torch.float16)
# attention_mask = inputs.get("attention_mask").to(device)
# labels = inputs.get("labels").to(device)
#
# outputs = model(input_ids=input_ids,
# pixel_values=pixel_values,
# labels=labels,
# # attention_mask=attention_mask,
# )
# loss = outputs.loss
# print("Loss:", loss.item())
# return (loss, outputs) if return_outputs else loss
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
@@ -59,79 +42,3 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def prediction_step(
self,
model: "torch.nn.Module",
inputs: Dict[str, Union[torch.Tensor, Any]],
prediction_loss_only: bool,
ignore_keys: Optional[List[str]] = None,
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
r"""
Removes the prompt part in the generated tokens.
Subclass and override to inject custom behavior.
"""
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
if self.args.predict_with_generate:
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
if prompt_len > label_len:
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
inputs["labels"] = inputs["labels"][:, :prompt_len]
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
)
if generated_tokens is not None and self.args.predict_with_generate:
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
generated_tokens = generated_tokens.contiguous()
return loss, generated_tokens, labels
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
r"""
Pads the tensor to the same length as the target tensor.
"""
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
return padded_tensor.contiguous() # in contiguous memory
def save_predictions(self, predict_results: "PredictionOutput") -> None:
r"""
Saves model predictions to `output_dir`.
A custom behavior that not contained in Seq2SeqTrainer.
"""
if not self.is_world_process_zero():
return
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
logger.info(f"Saving prediction results to {output_prediction_file}")
labels = np.where(
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
)
preds = np.where(
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
)
for i in range(len(preds)):
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
if len(pad_len):
preds[i] = np.concatenate(
(preds[i][pad_len[0]:], preds[i][: pad_len[0]]), axis=-1
) # move pad token to last
decoded_labels = self.tokenizer.batch_decode(
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
res: List[str] = []
for label, pred in zip(decoded_labels, decoded_preds):
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))

View File

@@ -1,21 +1,14 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, List, Optional
import torch
from PIL import Image
from torch.utils.data import Dataset
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
from ...data import split_dataset, get_mm_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
from ...model import load_tokenizer, load_processor, load_mm_model
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
from .collator import DataCollatorForVis2Seq
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
@@ -32,28 +25,27 @@ def run_sft_mm(
callbacks: Optional[List["TrainerCallback"]] = None,
):
processor = load_processor(model_args)
tokenizer = processor.tokenizer
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
tokenizer = load_tokenizer(model_args)
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
tokenizer.chat_template = CHAT_TEMPLATE
processor.tokenizer = tokenizer
use_clm = True
if "blip" in model_args.model_name_or_path:
use_clm = False
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train, use_clm=use_clm)
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
splited_dataset = split_dataset(dataset, data_args, training_args)
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
columns=list(splited_dataset['train_dataset'].features.keys()))
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
columns=list(splited_dataset['eval_dataset'].features.keys()))
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
train_dataset = dataset
eval_dataset = dataset
data_collator = DataCollatorForVis2Seq(
processor=processor,
use_qformer=model_args.use_qformer,
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
training_args.remove_unused_columns = False
# Initialize our Trainer
trainer = CustomSeq2SeqTrainer(
@@ -67,7 +59,6 @@ def run_sft_mm(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids