disentangle model from tuner and rename modules
Former-commit-id: 02cbf91e7e424f8379c1fed01b82a5f7a83b6947
This commit is contained in:
35
src/llmtuner/train/ppo/utils.py
Normal file
35
src/llmtuner/train/ppo/utils.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import torch
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
|
||||
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
|
||||
if target == "reward": # save default head temporarily
|
||||
valuehead_state_dict: Dict[str, torch.Tensor] = model.v_head.state_dict()
|
||||
setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone())
|
||||
setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone())
|
||||
|
||||
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
|
||||
model.v_head.load_state_dict({
|
||||
"summary.weight": model.get_buffer("{}_head_weight".format(target)).detach().clone(),
|
||||
"summary.bias": model.get_buffer("{}_head_bias".format(target)).detach().clone()
|
||||
})
|
||||
|
||||
|
||||
def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
|
||||
layer_norm_params = {}
|
||||
for name, param in model.named_parameters():
|
||||
if param.data.dtype == torch.float32:
|
||||
layer_norm_params[name] = param.data.detach().clone()
|
||||
param.data = param.data.to(model.config.torch_dtype)
|
||||
|
||||
return layer_norm_params
|
||||
|
||||
|
||||
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
|
||||
for name, param in model.named_parameters():
|
||||
if name in layernorm_params:
|
||||
param.data = layernorm_params[name]
|
||||
Reference in New Issue
Block a user