disentangle model from tuner and rename modules
Former-commit-id: 02cbf91e7e424f8379c1fed01b82a5f7a83b6947
This commit is contained in:
@@ -1 +1 @@
|
||||
from llmtuner.eval.engine import Evaluator
|
||||
from llmtuner.eval.evaluator import Evaluator
|
||||
|
||||
@@ -1,3 +0,0 @@
|
||||
CHOICES = ["A", "B", "C", "D"]
|
||||
|
||||
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
||||
@@ -11,12 +11,10 @@ from typing import Any, Dict, List, Optional
|
||||
from datasets import load_dataset
|
||||
from transformers.utils import cached_file
|
||||
|
||||
from llmtuner.eval.constants import CHOICES, SUBJECTS
|
||||
from llmtuner.eval.parser import get_eval_args
|
||||
from llmtuner.data.template import get_template_and_fix_tokenizer
|
||||
from llmtuner.eval.template import get_eval_template
|
||||
from llmtuner.extras.misc import dispatch_model
|
||||
from llmtuner.extras.template import get_template_and_fix_tokenizer
|
||||
from llmtuner.tuner.core import load_model_and_tokenizer
|
||||
from llmtuner.extras.constants import CHOICES, SUBJECTS
|
||||
from llmtuner.model import dispatch_model, get_eval_args, load_model_and_tokenizer
|
||||
|
||||
|
||||
class Evaluator:
|
||||
@@ -1,49 +0,0 @@
|
||||
import transformers
|
||||
from typing import Any, Dict, Optional, Tuple
|
||||
from transformers import HfArgumentParser
|
||||
|
||||
from llmtuner.extras.misc import parse_args
|
||||
from llmtuner.hparams import (
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
EvaluationArguments,
|
||||
FinetuningArguments
|
||||
)
|
||||
|
||||
|
||||
def parse_eval_args(
|
||||
args: Optional[Dict[str, Any]] = None
|
||||
) -> Tuple[
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
EvaluationArguments,
|
||||
FinetuningArguments
|
||||
]:
|
||||
parser = HfArgumentParser((
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
EvaluationArguments,
|
||||
FinetuningArguments
|
||||
))
|
||||
return parse_args(parser, args)
|
||||
|
||||
|
||||
def get_eval_args(
|
||||
args: Optional[Dict[str, Any]] = None
|
||||
) -> Tuple[
|
||||
ModelArguments,
|
||||
DataArguments,
|
||||
EvaluationArguments,
|
||||
FinetuningArguments
|
||||
]:
|
||||
model_args, data_args, eval_args, finetuning_args = parse_eval_args(args)
|
||||
|
||||
if data_args.template is None:
|
||||
raise ValueError("Please specify which `template` to use.")
|
||||
|
||||
if model_args.quantization_bit is not None and finetuning_args.finetuning_type != "lora":
|
||||
raise ValueError("Quantization is only compatible with the LoRA method.")
|
||||
|
||||
transformers.set_seed(eval_args.seed)
|
||||
|
||||
return model_args, data_args, eval_args, finetuning_args
|
||||
@@ -1,7 +1,7 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, List, Tuple
|
||||
|
||||
from llmtuner.eval.constants import CHOICES
|
||||
from llmtuner.extras.constants import CHOICES
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset
|
||||
|
||||
Reference in New Issue
Block a user